Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014
Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r
Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738
[+]
Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014
Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r
Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738
Yi, T., Li, J., Zhang, Y., & Yang, X. (2018). A Novel Nano-sized Catalyst CeO2-CuO/Hollow ZSM-5 for NOx Reduction with NH3. Chemical Research in Chinese Universities, 34(4), 661-664. doi:10.1007/s40242-018-7333-9
Scherzer, J. (1991). Designing FCC catalysts with high-silica Y zeolites. Applied Catalysis, 75(1), 1-32. doi:10.1016/s0166-9834(00)83119-x
Navarro, U. (2002). Impact of Deactivation Conditions on the Acidity of Y Zeolites Used in the Formulation of FCC Catalysts, Studied by FTIR of Adsorbed CO. Journal of Catalysis, 211(1), 64-74. doi:10.1016/s0021-9517(02)93728-0
Camblor, M. A., Corma, A., Martínez, A., Mocholí, F. A., & Pariente, J. P. (1989). Catalytic cracking of gasoil. Applied Catalysis, 55(1), 65-74. doi:10.1016/s0166-9834(00)82317-9
Williams, B. A., Babitz, S. M., Miller, J. T., Snurr, R. Q., & Kung, H. H. (1999). The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites. Applied Catalysis A: General, 177(2), 161-175. doi:10.1016/s0926-860x(98)00264-6
Xu, B., Bordiga, S., Prins, R., & van Bokhoven, J. A. (2007). Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite. Applied Catalysis A: General, 333(2), 245-253. doi:10.1016/j.apcata.2007.09.018
Delprato, F., Delmotte, L., Guth, J. L., & Huve, L. (1990). Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 10(6), 546-552. doi:10.1016/s0144-2449(05)80310-0
Dougnier, F., Patarin, J., Guth, J. L., & Anglerot, D. (1992). Synthesis, characterization, and catalytic properties of silica-rich faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ethers as templates. Zeolites, 12(2), 160-166. doi:10.1016/0144-2449(92)90078-4
He, D., Yuan, D., Song, Z., Tong, Y., Wu, Y., Xu, S., … Liu, Z. (2016). Hydrothermal synthesis of high silica zeolite Y using tetraethylammonium hydroxide as a structure-directing agent. Chemical Communications, 52(86), 12765-12768. doi:10.1039/c6cc06786g
Zhu, L., Ren, L., Zeng, S., Yang, C., Zhang, H., Meng, X., … Xiao, F.-S. (2013). High temperature synthesis of high silica zeolite Y with good crystallinity in the presence of N-methylpyridinium iodide. Chemical Communications, 49(89), 10495. doi:10.1039/c3cc43974g
Yuan, D., He, D., Xu, S., Song, Z., Zhang, M., Wei, Y., … Xu, Y. (2015). Imidazolium-based ionic liquids as novel organic SDA to synthesize high-silica Y zeolite. Microporous and Mesoporous Materials, 204, 1-7. doi:10.1016/j.micromeso.2014.10.049
P. E.Eberly S. M.Laurent H. E.Robson(Esso Research and Engineering Company) U.S. Patent 3 506 400 1970;
P. E.Pickert(Union Carbide Corporation) U.S. Patent 3 640 681 1972;
D. A.Young(Union Oil Company of California) U.S. Patent 3 644 200 1972;
Kerr, G. T. (1968). Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. The Journal of Physical Chemistry, 72(7), 2594-2596. doi:10.1021/j100853a058
Qin, Z., Shen, W., Zhou, S., Shen, Y., Li, C., Zeng, P., & Shen, B. (2020). Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter. Microporous and Mesoporous Materials, 303, 110248. doi:10.1016/j.micromeso.2020.110248
Qin, Z., Cychosz, K. A., Melinte, G., El Siblani, H., Gilson, J.-P., Thommes, M., … Valtchev, V. (2017). Opening the Cages of Faujasite-Type Zeolite. Journal of the American Chemical Society, 139(48), 17273-17276. doi:10.1021/jacs.7b10316
Kacirek, H., & Lechert, H. (1976). Rates of crystallization and a model for the growth of sodium-Y zeolites. The Journal of Physical Chemistry, 80(12), 1291-1296. doi:10.1021/j100553a006
Oleksiak, M. D., Muraoka, K., Hsieh, M., Conato, M. T., Shimojima, A., Okubo, T., … Rimer, J. D. (2017). Organic‐Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q
4
(
n
Al) Si Speciation. Angewandte Chemie International Edition, 56(43), 13366-13371. doi:10.1002/anie.201702672
Oleksiak, M. D., Muraoka, K., Hsieh, M., Conato, M. T., Shimojima, A., Okubo, T., … Rimer, J. D. (2017). Organic‐Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q
4
(
n
Al) Si Speciation. Angewandte Chemie, 129(43), 13551-13556. doi:10.1002/ange.201702672
Feng, G., Cheng, P., Yan, W., Boronat, M., Li, X., Su, J.-H., … Yu, J. (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 351(6278), 1188-1191. doi:10.1126/science.aaf1559
Feng, G., Wang, J., Boronat, M., Li, Y., Su, J.-H., Huang, J., … Yu, J. (2018). Radical-Facilitated Green Synthesis of Highly Ordered Mesoporous Silica Materials. Journal of the American Chemical Society, 140(14), 4770-4773. doi:10.1021/jacs.8b00093
Shi, D., Xu, L., Chen, P., Ma, T., Lin, C., Wang, X., … Sun, J. (2019). Hydroxyl free radical route to the stable siliceous Ti-UTL with extra-large pores for oxidative desulfurization. Chemical Communications, 55(10), 1390-1393. doi:10.1039/c8cc09225g
Chen, X., Qiu, M., Li, S., Yang, C., Shi, L., Zhou, S., … Sun, Y. (2020). Gamma‐Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angewandte Chemie International Edition, 59(28), 11325-11329. doi:10.1002/anie.202002886
Chen, X., Qiu, M., Li, S., Yang, C., Shi, L., Zhou, S., … Sun, Y. (2020). Gamma‐Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angewandte Chemie, 132(28), 11421-11425. doi:10.1002/ange.202002886
Anbar, M., Meyerstein, D., & Neta, P. (1966). The Reactivity of Aromatic Compounds toward Hydroxyl Radicals. The Journal of Physical Chemistry, 70(8), 2660-2662. doi:10.1021/j100880a034
Matthews, R. W. (1980). The Radiation Chemistry of the Terephthalate Dosimeter. Radiation Research, 83(1), 27. doi:10.2307/3575256
García-Martínez, J., Johnson, M., Valla, J., Li, K., & Ying, J. Y. (2012). Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2(5), 987. doi:10.1039/c2cy00309k
TSUTSUMI, K. (1972). Cumene-cracking activity of zeolite catalysts I. Effects of ion exchange and silica-to-alumina mole ratio. Journal of Catalysis, 24(1), 1-7. doi:10.1016/0021-9517(72)90002-4
Corma, A., & Wojciechowski, B. W. (1982). The Catalytic Cracking of Cumene. Catalysis Reviews, 24(1), 1-65. doi:10.1080/03602458208079649
[-]