- -

Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment

Mostrar el registro completo del ítem

Wang, J.; Liu, P.; Boronat Zaragoza, M.; Ferri-Vicedo, P.; Xu, Z.; Liu, P.; Shen, B.... (2020). Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment. Angewandte Chemie International Edition. 59(39):17225-17228. https://doi.org/10.1002/anie.202005715

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167323

Ficheros en el ítem

Metadatos del ítem

Título: Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment
Autor: Wang, Jianyu Liu, Pusheng Boronat Zaragoza, Mercedes Ferri-Vicedo, Pau Xu, Zhaoguo Liu, Peng Shen, Baojian Wang, Zhendong Yu, Jihong
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Zeolite Y, with a high SiO2/Al(2)O(3)ratio (SAR), plays an important role in fluidized catalytic cracking processes. However, in situ synthesis of zeolite Y with high SARs remains a challenge because of kinetic ...[+]
Palabras clave: Cracking , Density-functional calculations , Heterogeneous catalysis , Radicals , Zeolites
Derechos de uso: Cerrado
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.202005715
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/anie.202005715
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
...[+]
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/NKRDPC//2016YFB0701100/
info:eu-repo/grantAgreement/NSFC//21621001/
info:eu-repo/grantAgreement/MOE//B17020/
info:eu-repo/grantAgreement/NSFC//21920102005/
info:eu-repo/grantAgreement/NSFC//21835002/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
[-]
Agradecimientos:
We thank the National Natural Science Foundation of China (Grant 21920102005, 21621001 and 21835002), the National Key Research and Development Program of China (Grant 2016YFB0701100), the 111 Project (B17020), and the ...[+]
Tipo: Artículo

References

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r

Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738 [+]
Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r

Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738

Yi, T., Li, J., Zhang, Y., & Yang, X. (2018). A Novel Nano-sized Catalyst CeO2-CuO/Hollow ZSM-5 for NOx Reduction with NH3. Chemical Research in Chinese Universities, 34(4), 661-664. doi:10.1007/s40242-018-7333-9

Scherzer, J. (1991). Designing FCC catalysts with high-silica Y zeolites. Applied Catalysis, 75(1), 1-32. doi:10.1016/s0166-9834(00)83119-x

Navarro, U. (2002). Impact of Deactivation Conditions on the Acidity of Y Zeolites Used in the Formulation of FCC Catalysts, Studied by FTIR of Adsorbed CO. Journal of Catalysis, 211(1), 64-74. doi:10.1016/s0021-9517(02)93728-0

Camblor, M. A., Corma, A., Martínez, A., Mocholí, F. A., & Pariente, J. P. (1989). Catalytic cracking of gasoil. Applied Catalysis, 55(1), 65-74. doi:10.1016/s0166-9834(00)82317-9

Williams, B. A., Babitz, S. M., Miller, J. T., Snurr, R. Q., & Kung, H. H. (1999). The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites. Applied Catalysis A: General, 177(2), 161-175. doi:10.1016/s0926-860x(98)00264-6

Xu, B., Bordiga, S., Prins, R., & van Bokhoven, J. A. (2007). Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite. Applied Catalysis A: General, 333(2), 245-253. doi:10.1016/j.apcata.2007.09.018

Delprato, F., Delmotte, L., Guth, J. L., & Huve, L. (1990). Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 10(6), 546-552. doi:10.1016/s0144-2449(05)80310-0

Dougnier, F., Patarin, J., Guth, J. L., & Anglerot, D. (1992). Synthesis, characterization, and catalytic properties of silica-rich faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ethers as templates. Zeolites, 12(2), 160-166. doi:10.1016/0144-2449(92)90078-4

He, D., Yuan, D., Song, Z., Tong, Y., Wu, Y., Xu, S., … Liu, Z. (2016). Hydrothermal synthesis of high silica zeolite Y using tetraethylammonium hydroxide as a structure-directing agent. Chemical Communications, 52(86), 12765-12768. doi:10.1039/c6cc06786g

Zhu, L., Ren, L., Zeng, S., Yang, C., Zhang, H., Meng, X., … Xiao, F.-S. (2013). High temperature synthesis of high silica zeolite Y with good crystallinity in the presence of N-methylpyridinium iodide. Chemical Communications, 49(89), 10495. doi:10.1039/c3cc43974g

Yuan, D., He, D., Xu, S., Song, Z., Zhang, M., Wei, Y., … Xu, Y. (2015). Imidazolium-based ionic liquids as novel organic SDA to synthesize high-silica Y zeolite. Microporous and Mesoporous Materials, 204, 1-7. doi:10.1016/j.micromeso.2014.10.049

P. E.Eberly S. M.Laurent H. E.Robson(Esso Research and Engineering Company) U.S. Patent 3 506 400 1970;

P. E.Pickert(Union Carbide Corporation) U.S. Patent 3 640 681 1972;

D. A.Young(Union Oil Company of California) U.S. Patent 3 644 200 1972;

Kerr, G. T. (1968). Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. The Journal of Physical Chemistry, 72(7), 2594-2596. doi:10.1021/j100853a058

Qin, Z., Shen, W., Zhou, S., Shen, Y., Li, C., Zeng, P., & Shen, B. (2020). Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter. Microporous and Mesoporous Materials, 303, 110248. doi:10.1016/j.micromeso.2020.110248

Qin, Z., Cychosz, K. A., Melinte, G., El Siblani, H., Gilson, J.-P., Thommes, M., … Valtchev, V. (2017). Opening the Cages of Faujasite-Type Zeolite. Journal of the American Chemical Society, 139(48), 17273-17276. doi:10.1021/jacs.7b10316

Kacirek, H., & Lechert, H. (1976). Rates of crystallization and a model for the growth of sodium-Y zeolites. The Journal of Physical Chemistry, 80(12), 1291-1296. doi:10.1021/j100553a006

Oleksiak, M. D., Muraoka, K., Hsieh, M., Conato, M. T., Shimojima, A., Okubo, T., … Rimer, J. D. (2017). Organic‐Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q 4 ( n Al) Si Speciation. Angewandte Chemie International Edition, 56(43), 13366-13371. doi:10.1002/anie.201702672

Oleksiak, M. D., Muraoka, K., Hsieh, M., Conato, M. T., Shimojima, A., Okubo, T., … Rimer, J. D. (2017). Organic‐Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q 4 ( n Al) Si Speciation. Angewandte Chemie, 129(43), 13551-13556. doi:10.1002/ange.201702672

Feng, G., Cheng, P., Yan, W., Boronat, M., Li, X., Su, J.-H., … Yu, J. (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 351(6278), 1188-1191. doi:10.1126/science.aaf1559

Feng, G., Wang, J., Boronat, M., Li, Y., Su, J.-H., Huang, J., … Yu, J. (2018). Radical-Facilitated Green Synthesis of Highly Ordered Mesoporous Silica Materials. Journal of the American Chemical Society, 140(14), 4770-4773. doi:10.1021/jacs.8b00093

Shi, D., Xu, L., Chen, P., Ma, T., Lin, C., Wang, X., … Sun, J. (2019). Hydroxyl free radical route to the stable siliceous Ti-UTL with extra-large pores for oxidative desulfurization. Chemical Communications, 55(10), 1390-1393. doi:10.1039/c8cc09225g

Chen, X., Qiu, M., Li, S., Yang, C., Shi, L., Zhou, S., … Sun, Y. (2020). Gamma‐Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angewandte Chemie International Edition, 59(28), 11325-11329. doi:10.1002/anie.202002886

Chen, X., Qiu, M., Li, S., Yang, C., Shi, L., Zhou, S., … Sun, Y. (2020). Gamma‐Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angewandte Chemie, 132(28), 11421-11425. doi:10.1002/ange.202002886

Anbar, M., Meyerstein, D., & Neta, P. (1966). The Reactivity of Aromatic Compounds toward Hydroxyl Radicals. The Journal of Physical Chemistry, 70(8), 2660-2662. doi:10.1021/j100880a034

Matthews, R. W. (1980). The Radiation Chemistry of the Terephthalate Dosimeter. Radiation Research, 83(1), 27. doi:10.2307/3575256

García-Martínez, J., Johnson, M., Valla, J., Li, K., & Ying, J. Y. (2012). Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2(5), 987. doi:10.1039/c2cy00309k

TSUTSUMI, K. (1972). Cumene-cracking activity of zeolite catalysts I. Effects of ion exchange and silica-to-alumina mole ratio. Journal of Catalysis, 24(1), 1-7. doi:10.1016/0021-9517(72)90002-4

Corma, A., & Wojciechowski, B. W. (1982). The Catalytic Cracking of Cumene. Catalysis Reviews, 24(1), 1-65. doi:10.1080/03602458208079649

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem