- -

Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wang, Jianyu es_ES
dc.contributor.author Liu, Pusheng es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Ferri-Vicedo, Pau es_ES
dc.contributor.author Xu, Zhaoguo es_ES
dc.contributor.author Liu, Peng es_ES
dc.contributor.author Shen, Baojian es_ES
dc.contributor.author Wang, Zhendong es_ES
dc.contributor.author Yu, Jihong es_ES
dc.date.accessioned 2021-06-04T03:32:17Z
dc.date.available 2021-06-04T03:32:17Z
dc.date.issued 2020-09-21 es_ES
dc.identifier.issn 1433-7851 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167323
dc.description.abstract [EN] Zeolite Y, with a high SiO2/Al(2)O(3)ratio (SAR), plays an important role in fluidized catalytic cracking processes. However, in situ synthesis of zeolite Y with high SARs remains a challenge because of kinetic limitations. Here, zeolite Y with an SAR of 6.35 is synthesized by a hydroxyl radical assisted route. Density-functional theory (DFT) calculations suggest that hydroxyl radicals preferentially enhanced the formation of Si-O-Si bonds, thus leading to an increased SAR. To further increase the SAR, a dealumination process was carried out using citric acid, with a subsequent second-step hydrothermal crystallization, giving an SAR of up to 7.5 while maintaining good crystallinity and high product yield. The resultant zeolite Y shows good performance in cumene cracking. Introduced here is a new strategy for synthesizing high SAR zeolite Y, which is widely used in commercial applications. es_ES
dc.description.sponsorship We thank the National Natural Science Foundation of China (Grant 21920102005, 21621001 and 21835002), the National Key Research and Development Program of China (Grant 2016YFB0701100), the 111 Project (B17020), and the Spanish Government-MINECO (SEV-2016-0683 and MAT2017-82288-C2-1-P (AEI/FEDER, UE)) for supporting this work. P. F. thanks ITQ for his contract. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cracking es_ES
dc.subject Density-functional calculations es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Radicals es_ES
dc.subject Zeolites es_ES
dc.title Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/anie.202005715 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2016YFB0701100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21621001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MOE//B17020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21920102005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21835002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Wang, J.; Liu, P.; Boronat Zaragoza, M.; Ferri-Vicedo, P.; Xu, Z.; Liu, P.; Shen, B.... (2020). Organic-Free Synthesis of Zeolite Y with High Si/Al Ratios: Combined Strategy of In Situ Hydroxyl Radical Assistance and Post-Synthesis Treatment. Angewandte Chemie International Edition. 59(39):17225-17228. https://doi.org/10.1002/anie.202005715 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/anie.202005715 es_ES
dc.description.upvformatpinicio 17225 es_ES
dc.description.upvformatpfin 17228 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 39 es_ES
dc.identifier.pmid 32558159 es_ES
dc.relation.pasarela S\435904 es_ES
dc.contributor.funder Ministry of Education, China es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Instituto de Tecnología Química UPV-CSIC es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder National Key Research and Development Program of China es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 es_ES
dc.description.references Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r es_ES
dc.description.references Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738 es_ES
dc.description.references Yi, T., Li, J., Zhang, Y., & Yang, X. (2018). A Novel Nano-sized Catalyst CeO2-CuO/Hollow ZSM-5 for NOx Reduction with NH3. Chemical Research in Chinese Universities, 34(4), 661-664. doi:10.1007/s40242-018-7333-9 es_ES
dc.description.references Scherzer, J. (1991). Designing FCC catalysts with high-silica Y zeolites. Applied Catalysis, 75(1), 1-32. doi:10.1016/s0166-9834(00)83119-x es_ES
dc.description.references Navarro, U. (2002). Impact of Deactivation Conditions on the Acidity of Y Zeolites Used in the Formulation of FCC Catalysts, Studied by FTIR of Adsorbed CO. Journal of Catalysis, 211(1), 64-74. doi:10.1016/s0021-9517(02)93728-0 es_ES
dc.description.references Camblor, M. A., Corma, A., Martínez, A., Mocholí, F. A., & Pariente, J. P. (1989). Catalytic cracking of gasoil. Applied Catalysis, 55(1), 65-74. doi:10.1016/s0166-9834(00)82317-9 es_ES
dc.description.references Williams, B. A., Babitz, S. M., Miller, J. T., Snurr, R. Q., & Kung, H. H. (1999). The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites. Applied Catalysis A: General, 177(2), 161-175. doi:10.1016/s0926-860x(98)00264-6 es_ES
dc.description.references Xu, B., Bordiga, S., Prins, R., & van Bokhoven, J. A. (2007). Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite. Applied Catalysis A: General, 333(2), 245-253. doi:10.1016/j.apcata.2007.09.018 es_ES
dc.description.references Delprato, F., Delmotte, L., Guth, J. L., & Huve, L. (1990). Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 10(6), 546-552. doi:10.1016/s0144-2449(05)80310-0 es_ES
dc.description.references Dougnier, F., Patarin, J., Guth, J. L., & Anglerot, D. (1992). Synthesis, characterization, and catalytic properties of silica-rich faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ethers as templates. Zeolites, 12(2), 160-166. doi:10.1016/0144-2449(92)90078-4 es_ES
dc.description.references He, D., Yuan, D., Song, Z., Tong, Y., Wu, Y., Xu, S., … Liu, Z. (2016). Hydrothermal synthesis of high silica zeolite Y using tetraethylammonium hydroxide as a structure-directing agent. Chemical Communications, 52(86), 12765-12768. doi:10.1039/c6cc06786g es_ES
dc.description.references Zhu, L., Ren, L., Zeng, S., Yang, C., Zhang, H., Meng, X., … Xiao, F.-S. (2013). High temperature synthesis of high silica zeolite Y with good crystallinity in the presence of N-methylpyridinium iodide. Chemical Communications, 49(89), 10495. doi:10.1039/c3cc43974g es_ES
dc.description.references Yuan, D., He, D., Xu, S., Song, Z., Zhang, M., Wei, Y., … Xu, Y. (2015). Imidazolium-based ionic liquids as novel organic SDA to synthesize high-silica Y zeolite. Microporous and Mesoporous Materials, 204, 1-7. doi:10.1016/j.micromeso.2014.10.049 es_ES
dc.description.references P. E.Eberly S. M.Laurent H. E.Robson(Esso Research and Engineering Company) U.S. Patent 3 506 400 1970; es_ES
dc.description.references P. E.Pickert(Union Carbide Corporation) U.S. Patent 3 640 681 1972; es_ES
dc.description.references D. A.Young(Union Oil Company of California) U.S. Patent 3 644 200 1972; es_ES
dc.description.references Kerr, G. T. (1968). Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. The Journal of Physical Chemistry, 72(7), 2594-2596. doi:10.1021/j100853a058 es_ES
dc.description.references Qin, Z., Shen, W., Zhou, S., Shen, Y., Li, C., Zeng, P., & Shen, B. (2020). Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter. Microporous and Mesoporous Materials, 303, 110248. doi:10.1016/j.micromeso.2020.110248 es_ES
dc.description.references Qin, Z., Cychosz, K. A., Melinte, G., El Siblani, H., Gilson, J.-P., Thommes, M., … Valtchev, V. (2017). Opening the Cages of Faujasite-Type Zeolite. Journal of the American Chemical Society, 139(48), 17273-17276. doi:10.1021/jacs.7b10316 es_ES
dc.description.references Kacirek, H., & Lechert, H. (1976). Rates of crystallization and a model for the growth of sodium-Y zeolites. The Journal of Physical Chemistry, 80(12), 1291-1296. doi:10.1021/j100553a006 es_ES
dc.description.references Oleksiak, M. D., Muraoka, K., Hsieh, M., Conato, M. T., Shimojima, A., Okubo, T., … Rimer, J. D. (2017). Organic‐Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q 4 ( n Al) Si Speciation. Angewandte Chemie International Edition, 56(43), 13366-13371. doi:10.1002/anie.201702672 es_ES
dc.description.references Oleksiak, M. D., Muraoka, K., Hsieh, M., Conato, M. T., Shimojima, A., Okubo, T., … Rimer, J. D. (2017). Organic‐Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q 4 ( n Al) Si Speciation. Angewandte Chemie, 129(43), 13551-13556. doi:10.1002/ange.201702672 es_ES
dc.description.references Feng, G., Cheng, P., Yan, W., Boronat, M., Li, X., Su, J.-H., … Yu, J. (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 351(6278), 1188-1191. doi:10.1126/science.aaf1559 es_ES
dc.description.references Feng, G., Wang, J., Boronat, M., Li, Y., Su, J.-H., Huang, J., … Yu, J. (2018). Radical-Facilitated Green Synthesis of Highly Ordered Mesoporous Silica Materials. Journal of the American Chemical Society, 140(14), 4770-4773. doi:10.1021/jacs.8b00093 es_ES
dc.description.references Shi, D., Xu, L., Chen, P., Ma, T., Lin, C., Wang, X., … Sun, J. (2019). Hydroxyl free radical route to the stable siliceous Ti-UTL with extra-large pores for oxidative desulfurization. Chemical Communications, 55(10), 1390-1393. doi:10.1039/c8cc09225g es_ES
dc.description.references Chen, X., Qiu, M., Li, S., Yang, C., Shi, L., Zhou, S., … Sun, Y. (2020). Gamma‐Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angewandte Chemie International Edition, 59(28), 11325-11329. doi:10.1002/anie.202002886 es_ES
dc.description.references Chen, X., Qiu, M., Li, S., Yang, C., Shi, L., Zhou, S., … Sun, Y. (2020). Gamma‐Ray Irradiation to Accelerate Crystallization of Mesoporous Zeolites. Angewandte Chemie, 132(28), 11421-11425. doi:10.1002/ange.202002886 es_ES
dc.description.references Anbar, M., Meyerstein, D., & Neta, P. (1966). The Reactivity of Aromatic Compounds toward Hydroxyl Radicals. The Journal of Physical Chemistry, 70(8), 2660-2662. doi:10.1021/j100880a034 es_ES
dc.description.references Matthews, R. W. (1980). The Radiation Chemistry of the Terephthalate Dosimeter. Radiation Research, 83(1), 27. doi:10.2307/3575256 es_ES
dc.description.references García-Martínez, J., Johnson, M., Valla, J., Li, K., & Ying, J. Y. (2012). Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2(5), 987. doi:10.1039/c2cy00309k es_ES
dc.description.references TSUTSUMI, K. (1972). Cumene-cracking activity of zeolite catalysts I. Effects of ion exchange and silica-to-alumina mole ratio. Journal of Catalysis, 24(1), 1-7. doi:10.1016/0021-9517(72)90002-4 es_ES
dc.description.references Corma, A., & Wojciechowski, B. W. (1982). The Catalytic Cracking of Cumene. Catalysis Reviews, 24(1), 1-65. doi:10.1080/03602458208079649 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem