- -

Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids

Mostrar el registro completo del ítem

Gonzales-Zurita, Ó.; Clairand, J.; Peñalvo-López, E.; Escrivá-Escrivá, G. (2020). Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies. 13(13):1-29. https://doi.org/10.3390/en13133483

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167328

Ficheros en el ítem

Metadatos del ítem

Título: Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids
Autor: Gonzales-Zurita, Óscar Clairand, Jean-Michel Peñalvo-López, Elisa Escrivá-Escrivá, Guillermo
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Microgrids have emerged as a solution to address new challenges in power systems with the integration of distributed energy resources (DER). Inverter-based microgrids (IBMG) need to implement proper control systems ...[+]
Palabras clave: Distributed energy resources , Inverter , Microgrid , Multi-objective control , Renewable energy
Derechos de uso: Reconocimiento (by)
Fuente:
Energies. (eissn: 1996-1073 )
DOI: 10.3390/en13133483
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/en13133483
Tipo: Artículo

References

Ross, M., Abbey, C., Bouffard, F., & Joos, G. (2015). Multiobjective Optimization Dispatch for Microgrids With a High Penetration of Renewable Generation. IEEE Transactions on Sustainable Energy, 6(4), 1306-1314. doi:10.1109/tste.2015.2428676

Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5(1). doi:10.1186/s41601-019-0147-z

Katircioğlu, S., Abasiz, T., Sezer, S., & Katırcıoglu, S. (2019). Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research, 26(11), 10738-10745. doi:10.1007/s11356-019-04531-5 [+]
Ross, M., Abbey, C., Bouffard, F., & Joos, G. (2015). Multiobjective Optimization Dispatch for Microgrids With a High Penetration of Renewable Generation. IEEE Transactions on Sustainable Energy, 6(4), 1306-1314. doi:10.1109/tste.2015.2428676

Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5(1). doi:10.1186/s41601-019-0147-z

Katircioğlu, S., Abasiz, T., Sezer, S., & Katırcıoglu, S. (2019). Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research, 26(11), 10738-10745. doi:10.1007/s11356-019-04531-5

Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514

Akinyele, D., Belikov, J., & Levron, Y. (2018). Challenges of Microgrids in Remote Communities: A STEEP Model Application. Energies, 11(2), 432. doi:10.3390/en11020432

Benamar, A., Travaillé, P., Clairand, J.-M., & Escrivá-Escrivá, G. (2020). Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology, 10(2), 593. doi:10.18517/ijaseit.10.2.10815

Lakshmi, M., & Hemamalini, S. (2018). Nonisolated High Gain DC–DC Converter for DC Microgrids. IEEE Transactions on Industrial Electronics, 65(2), 1205-1212. doi:10.1109/tie.2017.2733463

Yin, C., Wu, H., Locment, F., & Sechilariu, M. (2017). Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 132, 14-27. doi:10.1016/j.enconman.2016.11.018

Chen, D., Xu, Y., & Huang, A. Q. (2017). Integration of DC Microgrids as Virtual Synchronous Machines Into the AC Grid. IEEE Transactions on Industrial Electronics, 64(9), 7455-7466. doi:10.1109/tie.2017.2674621

Abhinav, S., Schizas, I. D., Ferrese, F., & Davoudi, A. (2017). Optimization-Based AC Microgrid Synchronization. IEEE Transactions on Industrial Informatics, 13(5), 2339-2349. doi:10.1109/tii.2017.2702623

Liu, Z., Su, M., Sun, Y., Li, L., Han, H., Zhang, X., & Zheng, M. (2019). Optimal criterion and global/sub-optimal control schemes of decentralized economical dispatch for AC microgrid. International Journal of Electrical Power & Energy Systems, 104, 38-42. doi:10.1016/j.ijepes.2018.06.045

Khatibzadeh, A., Besmi, M., Mahabadi, A., & Reza Haghifam, M. (2017). Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages. Energies, 10(2), 169. doi:10.3390/en10020169

Asghar, F., Talha, M., & Kim, S. (2017). Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid. Energies, 10(6), 760. doi:10.3390/en10060760

Lotfi, H., & Khodaei, A. (2017). Hybrid AC/DC microgrid planning. Energy, 118, 37-46. doi:10.1016/j.energy.2016.12.015

Kerdphol, T., Rahman, F., & Mitani, Y. (2018). Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration. Energies, 11(4), 981. doi:10.3390/en11040981

Rodrigues, Y. R., Zambroni de Souza, A. C., & Ribeiro, P. F. (2018). An inclusive methodology for Plug-in electrical vehicle operation with G2V and V2G in smart microgrid environments. International Journal of Electrical Power & Energy Systems, 102, 312-323. doi:10.1016/j.ijepes.2018.04.037

Ghosh, S., & Chattopadhyay, S. (2020). Three-Loop-Based Universal Control Architecture for Decentralized Operation of Multiple Inverters in an Autonomous Grid-Interactive Microgrid. IEEE Transactions on Industry Applications, 56(2), 1966-1979. doi:10.1109/tia.2020.2964746

Mohapatra, S. R., & Agarwal, V. (2020). Model Predictive Control for Flexible Reduction of Active Power Oscillation in Grid-Tied Multilevel Inverters Under Unbalanced and Distorted Microgrid Conditions. IEEE Transactions on Industry Applications, 56(2), 1107-1115. doi:10.1109/tia.2019.2957480

Ziouani, I., Boukhetala, D., Darcherif, A.-M., Amghar, B., & El Abbassi, I. (2018). Hierarchical control for flexible microgrid based on three-phase voltage source inverters operated in parallel. International Journal of Electrical Power & Energy Systems, 95, 188-201. doi:10.1016/j.ijepes.2017.08.027

Golshannavaz, S., & Mortezapour, V. (2018). A generalized droop control approach for islanded DC microgrids hosting parallel-connected DERs. Sustainable Cities and Society, 36, 237-245. doi:10.1016/j.scs.2017.09.038

Safa, A., Madjid Berkouk, E. L., Messlem, Y., & Gouichiche, A. (2018). A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions. International Journal of Electrical Power & Energy Systems, 100, 253-264. doi:10.1016/j.ijepes.2018.02.042

Andishgar, M. H., Gholipour, E., & Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043-1060. doi:10.1016/j.rser.2017.05.267

Li, Z., Zang, C., Zeng, P., Yu, H., Li, S., & Bian, J. (2017). Control of a Grid-Forming Inverter Based on Sliding-Mode and Mixed ${H_2}/{H_\infty }$ Control. IEEE Transactions on Industrial Electronics, 64(5), 3862-3872. doi:10.1109/tie.2016.2636798

Hossain, M. A., Pota, H. R., Squartini, S., & Abdou, A. F. (2019). Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renewable Energy, 136, 746-757. doi:10.1016/j.renene.2019.01.005

Shokoohi, S., Golshannavaz, S., Khezri, R., & Bevrani, H. (2018). Intelligent secondary control in smart microgrids: an on-line approach for islanded operations. Optimization and Engineering, 19(4), 917-936. doi:10.1007/s11081-018-9382-9

Safari, A., Babaei, F., & Farrokhifar, M. (2019). A load frequency control using a PSO-based ANN for micro-grids in the presence of electric vehicles. International Journal of Ambient Energy, 42(6), 688-700. doi:10.1080/01430750.2018.1563811

Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., & Mustafa, M. W. (2016). Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review. Renewable and Sustainable Energy Reviews, 54, 1592-1610. doi:10.1016/j.rser.2015.10.079

Rokrok, E., Shafie-khah, M., & Catalão, J. P. S. (2018). Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renewable and Sustainable Energy Reviews, 82, 3225-3235. doi:10.1016/j.rser.2017.10.022

Bouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., & Benghanem, M. (2015). A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews, 44, 751-766. doi:10.1016/j.rser.2015.01.016

Vásquez, V., Ortega, L. M., Romero, D., Ortega, R., Carranza, O., & Rodríguez, J. J. (2017). Comparison of methods for controllers design of single phase inverter operating in island mode in a microgrid: Review. Renewable and Sustainable Energy Reviews, 76, 256-267. doi:10.1016/j.rser.2017.03.060

Shen, X., Wang, H., Li, J., Su, Q., & Gao, L. (2019). Distributed Secondary Voltage Control of Islanded Microgrids Based on RBF-Neural-Network Sliding-Mode Technique. IEEE Access, 7, 65616-65623. doi:10.1109/access.2019.2915509

Arbab-Zavar, B., Palacios-Garcia, E., Vasquez, J., & Guerrero, J. (2019). Smart Inverters for Microgrid Applications: A Review. Energies, 12(5), 840. doi:10.3390/en12050840

Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212, 340-361. doi:10.1016/j.apenergy.2017.12.048

Kerdphol, T., Rahman, F., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration. Sustainability, 9(5), 773. doi:10.3390/su9050773

Hajiakbari Fini, M., & Hamedani Golshan, M. E. (2018). Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electric Power Systems Research, 154, 13-22. doi:10.1016/j.epsr.2017.08.007

Jung, J., & Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180-191. doi:10.1016/j.rser.2016.10.061

Baharizadeh, M., Karshenas, H. R., & Guerrero, J. M. (2018). An improved power control strategy for hybrid AC-DC microgrids. International Journal of Electrical Power & Energy Systems, 95, 364-373. doi:10.1016/j.ijepes.2017.08.036

Serban, I., & Ion, C. P. (2017). Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability. International Journal of Electrical Power & Energy Systems, 89, 94-105. doi:10.1016/j.ijepes.2017.01.009

Tavakoli, M., Shokridehaki, F., Marzband, M., Godina, R., & Pouresmaeil, E. (2018). A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustainable Cities and Society, 41, 332-340. doi:10.1016/j.scs.2018.05.035

Cagnano, A., De Tuglie, E., & Cicognani, L. (2017). Prince — Electrical Energy Systems Lab. Electric Power Systems Research, 148, 10-17. doi:10.1016/j.epsr.2017.03.011

Zhang, H., Meng, W., Qi, J., Wang, X., & Zheng, W. X. (2019). Distributed Load Sharing Under False Data Injection Attack in an Inverter-Based Microgrid. IEEE Transactions on Industrial Electronics, 66(2), 1543-1551. doi:10.1109/tie.2018.2793241

Yang, L., Hu, Z., Xie, S., Kong, S., & Lin, W. (2019). Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster. Electric Power Systems Research, 173, 71-85. doi:10.1016/j.epsr.2019.04.011

Rahman, F. S., Kerdphol, T., Watanabe, M., & Mitani, Y. (2019). Optimization of virtual inertia considering system frequency protection scheme. Electric Power Systems Research, 170, 294-302. doi:10.1016/j.epsr.2019.01.025

Farrokhabadi, M., Canizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza-Araya, P. A., … Reilly, J. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. doi:10.1109/tpwrs.2019.2925703

Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A. V., & Alan, İ. (2017). Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 72, 205-214. doi:10.1016/j.rser.2017.01.064

Rajesh, K. S., Dash, S. S., Rajagopal, R., & Sridhar, R. (2017). A review on control of ac microgrid. Renewable and Sustainable Energy Reviews, 71, 814-819. doi:10.1016/j.rser.2016.12.106

Marzal, S., Salas, R., González-Medina, R., Garcerá, G., & Figueres, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews, 82, 3610-3622. doi:10.1016/j.rser.2017.10.101

Singh, A., & Suhag, S. (2018). Trends in Islanded Microgrid Frequency Regulation – A Review. Smart Science, 7(2), 91-115. doi:10.1080/23080477.2018.1540380

Hou, X., Sun, Y., Lu, J., Zhang, X., Koh, L. H., Su, M., & Guerrero, J. M. (2018). Distributed Hierarchical Control of AC Microgrid Operating in Grid-Connected, Islanded and Their Transition Modes. IEEE Access, 6, 77388-77401. doi:10.1109/access.2018.2882678

SHI, R., ZHANG, X., HU, C., XU, H., GU, J., & CAO, W. (2017). Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids. Journal of Modern Power Systems and Clean Energy, 6(3), 482-494. doi:10.1007/s40565-017-0347-3

Toub, M., Bijaieh, M. M., Weaver, W. W., III, R. D. R., Maaroufi, M., & Aniba, G. (2019). Droop Control in DQ Coordinates for Fixed Frequency Inverter-Based AC Microgrids. Electronics, 8(10), 1168. doi:10.3390/electronics8101168

Shuai, Z., Fang, J., Ning, F., & Shen, Z. J. (2018). Hierarchical structure and bus voltage control of DC microgrid. Renewable and Sustainable Energy Reviews, 82, 3670-3682. doi:10.1016/j.rser.2017.10.096

Agundis-Tinajero, G., Segundo-Ramírez, J., Visairo-Cruz, N., Savaghebi, M., Guerrero, J. M., & Barocio, E. (2019). Power flow modeling of islanded AC microgrids with hierarchical control. International Journal of Electrical Power & Energy Systems, 105, 28-36. doi:10.1016/j.ijepes.2018.08.002

Ali, A., Li, W., Hussain, R., He, X., Williams, B., & Memon, A. (2017). Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China. Sustainability, 9(7), 1146. doi:10.3390/su9071146

Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681-704. doi:10.1016/j.energy.2017.02.174

Yazdi, F., & Hosseinian, S. H. (2019). A novel «Smart Branch» for power quality improvement in microgrids. International Journal of Electrical Power & Energy Systems, 110, 161-170. doi:10.1016/j.ijepes.2019.02.026

Bassey, O., Butler-Purry, K. L., & Chen, B. (2020). Dynamic Modeling of Sequential Service Restoration in Islanded Single Master Microgrids. IEEE Transactions on Power Systems, 35(1), 202-214. doi:10.1109/tpwrs.2019.2929268

Chang, E.-C. (2018). Study and Application of Intelligent Sliding Mode Control for Voltage Source Inverters. Energies, 11(10), 2544. doi:10.3390/en11102544

Das, D., Gurrala, G., & Shenoy, U. J. (2018). Linear Quadratic Regulator-Based Bumpless Transfer in Microgrids. IEEE Transactions on Smart Grid, 9(1), 416-425. doi:10.1109/tsg.2016.2580159

Nguyen, H. K., Khodaei, A., & Han, Z. (2018). Incentive Mechanism Design for Integrated Microgrids in Peak Ramp Minimization Problem. IEEE Transactions on Smart Grid, 9(6), 5774-5785. doi:10.1109/tsg.2017.2696903

Xiao, Z., Guerrero, J. M., Shuang, J., Sera, D., Schaltz, E., & Vásquez, J. C. (2018). Flat tie-line power scheduling control of grid-connected hybrid microgrids. Applied Energy, 210, 786-799. doi:10.1016/j.apenergy.2017.07.066

Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). A Decentralized Robust Mixed $H_{{2}}/ H_{{{\infty }}}$ Voltage Control Scheme to Improve Small/Large-Signal Stability and FRT Capability of Islanded Multi-DER Microgrid Considering Load Disturbances. IEEE Systems Journal, 12(3), 2610-2621. doi:10.1109/jsyst.2017.2716351

Panda, S. K., & Ghosh, A. (2020). A Computational Analysis of Interfacing Converters with Advanced Control Methodologies for Microgrid Application. Technology and Economics of Smart Grids and Sustainable Energy, 5(1). doi:10.1007/s40866-020-0077-x

Zhang, L., Chen, K., Lyu, L., & Cai, G. (2019). Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm. Energies, 12(6), 1162. doi:10.3390/en12061162

Zhu, K., Sun, P., Zhou, L., Du, X., & Luo, Q. (2020). Frequency-Division Virtual Impedance Shaping Control Method for Grid-Connected Inverters in a Weak and Distorted Grid. IEEE Transactions on Power Electronics, 35(8), 8116-8129. doi:10.1109/tpel.2019.2963345

Samavati, E., & Mohammadi, H. R. (2019). Simultaneous voltage and current harmonics compensation in islanded/grid-connected microgrids using virtual impedance concept. Sustainable Energy, Grids and Networks, 20, 100258. doi:10.1016/j.segan.2019.100258

Shi, K., Ye, H., Song, W., & Zhou, G. (2018). Virtual Inertia Control Strategy in Microgrid Based on Virtual Synchronous Generator Technology. IEEE Access, 6, 27949-27957. doi:10.1109/access.2018.2839737

Fathi, A., Shafiee, Q., & Bevrani, H. (2018). Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator. IEEE Transactions on Power Systems, 33(6), 6289-6297. doi:10.1109/tpwrs.2018.2850880

Amoateng, D. O., Al Hosani, M., Elmoursi, M. S., Turitsyn, K., & Kirtley, J. L. (2018). Adaptive Voltage and Frequency Control of Islanded Multi-Microgrids. IEEE Transactions on Power Systems, 33(4), 4454-4465. doi:10.1109/tpwrs.2017.2780986

Sopinka, A., & Pitt, L. (2013). British Columbia Electricity Supply Gap Strategy: A Redefinition of Self-Sufficiency. The Electricity Journal, 26(3), 81-88. doi:10.1016/j.tej.2013.03.003

Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). Decentralized Sliding Mode Control of WG/PV/FC Microgrids Under Unbalanced and Nonlinear Load Conditions for On- and Off-Grid Modes. IEEE Systems Journal, 12(4), 3108-3119. doi:10.1109/jsyst.2017.2761792

Gholami, S., Saha, S., & Aldeen, M. (2018). Robust multiobjective control method for power sharing among distributed energy resources in islanded microgrids with unbalanced and nonlinear loads. International Journal of Electrical Power & Energy Systems, 94, 321-338. doi:10.1016/j.ijepes.2017.07.012

Mousazadeh Mousavi, S. Y., Jalilian, A., Savaghebi, M., & Guerrero, J. M. (2018). Autonomous Control of Current- and Voltage-Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids. IEEE Transactions on Power Electronics, 33(11), 9375-9386. doi:10.1109/tpel.2018.2792780

Fani, B., Zandi, F., & Karami-Horestani, A. (2018). An enhanced decentralized reactive power sharing strategy for inverter-based microgrid. International Journal of Electrical Power & Energy Systems, 98, 531-542. doi:10.1016/j.ijepes.2017.12.023

Khayat, Y., Naderi, M., Shafiee, Q., Batmani, Y., Fathi, M., Guerrero, J. M., & Bevrani, H. (2019). Decentralized Optimal Frequency Control in Autonomous Microgrids. IEEE Transactions on Power Systems, 34(3), 2345-2353. doi:10.1109/tpwrs.2018.2889671

Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245

Alyazidi, N. M., Mahmoud, M. S., & Abouheaf, M. I. (2018). Adaptive critics based cooperative control scheme for islanded Microgrids. Neurocomputing, 272, 532-541. doi:10.1016/j.neucom.2017.07.027

Buduma, P., & Panda, G. (2018). Robust nested loop control scheme for LCL‐filtered inverter‐based DG unit in grid‐connected and islanded modes. IET Renewable Power Generation, 12(11), 1269-1285. doi:10.1049/iet-rpg.2017.0803

Batiyah, S., Sharma, R., Abdelwahed, S., & Zohrabi, N. (2020). An MPC-based power management of standalone DC microgrid with energy storage. International Journal of Electrical Power & Energy Systems, 120, 105949. doi:10.1016/j.ijepes.2020.105949

Baghaee, H. R., Mirsalim, M., Gharehpetan, G. B., & Talebi, H. A. (2018). Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations Using Radial Basis Function Neural Networks. IEEE Systems Journal, 12(3), 2749-2759. doi:10.1109/jsyst.2016.2645165

Benhalima, S., Miloud, R., & Chandra, A. (2018). Real-Time Implementation of Robust Control Strategies Based on Sliding Mode Control for Standalone Microgrids Supplying Non-Linear Loads. Energies, 11(10), 2590. doi:10.3390/en11102590

California Carbon Market Watch: A Comprehensive Analysis of the Golden State’s Cap-and-Trade Program, Year One—2012–2013. 2014https://www.issuelab.org/resource/california-carbon-market-watch-a-comprehensive-analysis-of-the-golden-state-s-cap-and-trade-program-year-one-2012-2013.html

Exploring the Best Possible Trade-Off between Competing Objectives: Identifying the Pareto Fronthttps://pythonhealthcare.org/2018/09/27/93-exploring-the-best-possible-trade-off-between-competing-objectives-identifying-the-p

Teekaraman, Y., Kuppusamy, R., & Nikolovski, S. (2019). Solution for Voltage and Frequency Regulation in Standalone Microgrid using Hybrid Multiobjective Symbiotic Organism Search Algorithm. Energies, 12(14), 2812. doi:10.3390/en12142812

Zeng, Z., Li, H., Tang, S., Yang, H., & Zhao, R. (2016). Multi‐objective control of multi‐functional grid‐connected inverter for renewable energy integration and power quality service. IET Power Electronics, 9(4), 761-770. doi:10.1049/iet-pel.2015.0317

Wu, Y., Guerrero, J. M., Vasquez, J. C., & Wu, Y. (2019). Bumpless Optimal Control over Multi-Objective Microgrids with Mode-Dependent Controllers. Energies, 12(19), 3619. doi:10.3390/en12193619

Sedighizadeh, M., Esmaili, M., & Eisapour-Moarref, A. (2017). Voltage and frequency regulation in autonomous microgrids using Hybrid Big Bang-Big Crunch algorithm. Applied Soft Computing, 52, 176-189. doi:10.1016/j.asoc.2016.12.031

Miao, L., Zhang, Y., Xiao, X., Guo, Q., Zhang, J., Yildirim, T., & Liu, H. (2020). Multiobjective Coordinated Control Strategy for Grid-Connected Inverter under Unbalanced Voltage Conditions. Journal of Energy Engineering, 146(3), 04020005. doi:10.1061/(asce)ey.1943-7897.0000651

Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2016). Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy, 115, 1022-1041. doi:10.1016/j.energy.2016.09.007

Doyran, R. V., Sedighizadeh, M., Rezazadeh, A., & Alavi, S. M. M. (2020). Optimal allocation of passive filters and inverter based DGs joint with optimal feeder reconfiguration to improve power quality in a harmonic polluted microgrid. Renewable Energy Focus, 32, 63-78. doi:10.1016/j.ref.2019.12.001

Agnoletto, E. J., Silva de Castro, D., Neves, R. V. A., Quadros Machado, R., & Oliveira, V. A. (2019). An Optimal Energy Management Technique Using the $\epsilon$ -Constraint Method for Grid-Tied and Stand-Alone Battery-Based Microgrids. IEEE Access, 7, 165928-165942. doi:10.1109/access.2019.2954050

Hamidi, A., Nazarpour, D., & Golshannavaz, S. (2018). Multiobjective Scheduling of Microgrids to Harvest Higher Photovoltaic Energy. IEEE Transactions on Industrial Informatics, 14(1), 47-57. doi:10.1109/tii.2017.2717906

Garroussi, Z., Ellaia, R., El-ghazali-Talbi, & Lucas, J. (2020). A matheuristic for a bi-objective demand-side optimization for cooperative smart homes. Electrical Engineering, 102(4), 1913-1930. doi:10.1007/s00202-020-00997-6

Manas, M. (2018). Optimization of Distributed Generation Based Hybrid Renewable Energy System for a DC Micro-Grid Using Particle Swarm Optimization. Distributed Generation & Alternative Energy Journal, 33(4), 7-25. doi:10.1080/21563306.2018.12029912

Ye, B., Shi, X., Wang, X., & Wu, H. (2019). Optimisation configuration of hybrid AC/DC microgrid containing electric vehicles based on the NSGA‐II algorithm. The Journal of Engineering, 2019(10), 7229-7236. doi:10.1049/joe.2018.5043

Raju P, E. S. N., & Jain, T. (2017). Robust optimal centralized controller to mitigate the small signal instability in an islanded inverter based microgrid with active and passive loads. International Journal of Electrical Power & Energy Systems, 90, 225-236. doi:10.1016/j.ijepes.2017.02.011

Zhao, F., Yuan, J., & Wang, N. (2019). Dynamic Economic Dispatch Model of Microgrid Containing Energy Storage Components Based on a Variant of NSGA-II Algorithm. Energies, 12(5), 871. doi:10.3390/en12050871

Dissanayake, A. M., & Ekneligoda, N. C. (2020). Multiobjective Optimization of Droop-Controlled Distributed Generators in DC Microgrids. IEEE Transactions on Industrial Informatics, 16(4), 2423-2435. doi:10.1109/tii.2019.2931837

Brandao, D. I., Ferreira, W. M., Alonso, A. M. S., Tedeschi, E., & Marafao, F. P. (2020). Optimal Multiobjective Control of Low-Voltage AC Microgrids: Power Flow Regulation and Compensation of Reactive Power and Unbalance. IEEE Transactions on Smart Grid, 11(2), 1239-1252. doi:10.1109/tsg.2019.2933790

Ferreira, W. M., Meneghini, I. R., Brandao, D. I., & Guimarães, F. G. (2020). Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids. Applied Energy, 274, 115326. doi:10.1016/j.apenergy.2020.115326

Dehkordi, N. M., Sadati, N., & Hamzeh, M. (2018). Robust tuning of transient droop gains based on Kharitonov’s stability theorem in droop‐controlled microgrids. IET Generation, Transmission & Distribution, 12(14), 3495-3501. doi:10.1049/iet-gtd.2017.1767

Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Seeker optimization approach to dynamic PI based virtual impedance drooping for economic load sharing between PV and SOFC in an islanded microgrid. Sustainable Cities and Society, 37, 550-562. doi:10.1016/j.scs.2017.11.013

Praiselin, W. J., & Edward, J. B. (2017). Voltage Profile Improvement of Solar PV Grid – Connected Inverter with Micro Grid Operation using PI Controller. Energy Procedia, 117, 104-111. doi:10.1016/j.egypro.2017.05.112

Rajesh, K. S., Dash, S. S., & Rajagopal, R. (2019). Hybrid improved firefly-pattern search optimized fuzzy aided PID controller for automatic generation control of power systems with multi-type generations. Swarm and Evolutionary Computation, 44, 200-211. doi:10.1016/j.swevo.2018.03.005

Dragicevic, T. (2018). Dynamic Stabilization of DC Microgrids With Predictive Control of Point-of-Load Converters. IEEE Transactions on Power Electronics, 33(12), 10872-10884. doi:10.1109/tpel.2018.2801886

John, T., & Ping Lam, S. (2017). Voltage and frequency control during microgrid islanding in a multi‐area multi‐microgrid system. IET Generation, Transmission & Distribution, 11(6), 1502-1512. doi:10.1049/iet-gtd.2016.1113

Shan, Y., Hu, J., Li, Z., & Guerrero, J. M. (2018). A Model Predictive Control for Renewable Energy Based AC Microgrids Without Any PID Regulators. IEEE Transactions on Power Electronics, 33(11), 9122-9126. doi:10.1109/tpel.2018.2822314

Babqi, A. J., & Etemadi, A. H. (2017). MPC‐based microgrid control with supplementary fault current limitation and smooth transition mechanisms. IET Generation, Transmission & Distribution, 11(9), 2164-2172. doi:10.1049/iet-gtd.2016.1387

Ramya, K., & Rameshkumar, K. A. (2018). Fuzzy and De-Coupled d-q Control Strategy in Riven Bias Inverter for Islanding Operation in Microgrid. Journal of Computational and Theoretical Nanoscience, 15(6), 2121-2125. doi:10.1166/jctn.2018.7419

Sedaghati, R., & Shakarami, M. R. (2019). A novel control strategy and power management of hybrid PV/FC/SC/battery renewable power system-based grid-connected microgrid. Sustainable Cities and Society, 44, 830-843. doi:10.1016/j.scs.2018.11.014

Wang, Z., Huang, Z., Song, C., & Zhang, H. (2018). Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition. IEEE Transactions on Smart Grid, 9(2), 797-806. doi:10.1109/tsg.2016.2565667

Mahmud, K., Sahoo, A. K., Ravishankar, J., & Dong, Z. Y. (2019). Coordinated Multilayer Control for Energy Management of Grid-Connected AC Microgrids. IEEE Transactions on Industry Applications, 55(6), 7071-7081. doi:10.1109/tia.2019.2931490

Tabart, Q., Vechiu, I., Etxeberria, A., & Bacha, S. (2018). Hybrid Energy Storage System Microgrids Integration for Power Quality Improvement Using Four-Leg Three-Level NPC Inverter and Second-Order Sliding Mode Control. IEEE Transactions on Industrial Electronics, 65(1), 424-435. doi:10.1109/tie.2017.2723863

Yan, H., Zhou, X., Zhang, H., Yang, F., & Wu, Z.-G. (2019). A Novel Sliding Mode Estimation for Microgrid Control With Communication Time Delays. IEEE Transactions on Smart Grid, 10(2), 1509-1520. doi:10.1109/tsg.2017.2771493

Delghavi, M. B., & Yazdani, A. (2019). Sliding-Mode Control of AC Voltages and Currents of Dispatchable Distributed Energy Resources in Master-Slave-Organized Inverter-Based Microgrids. IEEE Transactions on Smart Grid, 10(1), 980-991. doi:10.1109/tsg.2017.2756935

Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2021). OC/OL Protection of Droop-Controlled and Directly Voltage-Controlled Microgrids Using TMF/ANN-Based Fault Detection and Discrimination. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(3), 3254-3265. doi:10.1109/jestpe.2019.2958925

Yang, Q., Le Blond, S., Aggarwal, R., Wang, Y., & Li, J. (2017). New ANN method for multi-terminal HVDC protection relaying. Electric Power Systems Research, 148, 192-201. doi:10.1016/j.epsr.2017.03.024

Bonala, A. K., & Sandepudi, S. R. (2019). Centralised model‐predictive decoupled active–reactive power control for three‐level neutral point clamped photovoltaic inverter with preference selective index‐based objective prioritisation. IET Power Electronics, 12(4), 840-851. doi:10.1049/iet-pel.2018.5825

Tran, T., Yoon, S.-J., & Kim, K.-H. (2018). An LQR-Based Controller Design for an LCL-Filtered Grid-Connected Inverter in Discrete-Time State-Space under Distorted Grid Environment. Energies, 11(8), 2062. doi:10.3390/en11082062

Anbarasu, E., Pandian S, M. V., & Basha, A. R. (2020). An improved power conditioning system for grid integration of solar power using ANFIS based FOPID controller. Microprocessors and Microsystems, 74, 103030. doi:10.1016/j.micpro.2020.103030

Kirankumar, B., Siva Reddy, Y. V., & Vijayakumar, M. (2017). Multilevel inverter with space vector modulation: intelligence direct torque control of induction motor. IET Power Electronics, 10(10), 1129-1137. doi:10.1049/iet-pel.2016.0287

Vinayagam, A., Alqumsan, A. A., Swarna, K. S. V., Khoo, S. Y., & Stojcevski, A. (2018). Intelligent control strategy in the islanded network of a solar PV microgrid. Electric Power Systems Research, 155, 93-103. doi:10.1016/j.epsr.2017.10.006

Han, Y., Zhang, K., Li, H., Coelho, E. A. A., & Guerrero, J. M. (2018). MAS-Based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters: A Comprehensive Overview. IEEE Transactions on Power Electronics, 33(8), 6488-6508. doi:10.1109/tpel.2017.2761438

Antonio de Souza Ribeiro, L., Freijedo, F. D., de Bosio, F., Soares Lima, M., Guerrero, J. M., & Pastorelli, M. (2018). Full Discrete Modeling, Controller Design, and Sensitivity Analysis for High-Performance Grid-Forming Converters in Islanded Microgrids. IEEE Transactions on Industry Applications, 54(6), 6267-6278. doi:10.1109/tia.2018.2847635

De Bosio, F., de S. Ribeiro, L. A., Freijedo, F. D., Pastorelli, M., & Guerrero, J. M. (2017). Discrete-Time Domain Modeling of Voltage Source Inverters in Standalone Applications: Enhancement of Regulators Performance by Means of Smith Predictor. IEEE Transactions on Power Electronics, 32(10), 8100-8114. doi:10.1109/tpel.2016.2632527

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem