Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzales-Zurita, Óscar | es_ES |
dc.contributor.author | Clairand, Jean-Michel | es_ES |
dc.contributor.author | Peñalvo-López, Elisa | es_ES |
dc.contributor.author | Escrivá-Escrivá, Guillermo | es_ES |
dc.date.accessioned | 2021-06-04T03:32:41Z | |
dc.date.available | 2021-06-04T03:32:41Z | |
dc.date.issued | 2020-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167328 | |
dc.description.abstract | [EN] Microgrids have emerged as a solution to address new challenges in power systems with the integration of distributed energy resources (DER). Inverter-based microgrids (IBMG) need to implement proper control systems to avoid stability and reliability issues. Thus, several researchers have introduced multi-objective control strategies for distributed generation on IBMG. This paper presents a review of the different approaches that have been proposed by several authors of multi-objective control. This work describes the main features of the inverter as a key component of microgrids. Details related to accomplishing efficient generation from a control systems' view have been observed. This study addresses the potential of multi-objective control to overcome conflicting objectives with balanced results. Finally, this paper shows future trends in control objectives and discussion of the different multi-objective approaches. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Distributed energy resources | es_ES |
dc.subject | Inverter | es_ES |
dc.subject | Microgrid | es_ES |
dc.subject | Multi-objective control | es_ES |
dc.subject | Renewable energy | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en13133483 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Gonzales-Zurita, Ó.; Clairand, J.; Peñalvo-López, E.; Escrivá-Escrivá, G. (2020). Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies. 13(13):1-29. https://doi.org/10.3390/en13133483 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en13133483 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 13 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\423724 | es_ES |
dc.description.references | Ross, M., Abbey, C., Bouffard, F., & Joos, G. (2015). Multiobjective Optimization Dispatch for Microgrids With a High Penetration of Renewable Generation. IEEE Transactions on Sustainable Energy, 6(4), 1306-1314. doi:10.1109/tste.2015.2428676 | es_ES |
dc.description.references | Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5(1). doi:10.1186/s41601-019-0147-z | es_ES |
dc.description.references | Katircioğlu, S., Abasiz, T., Sezer, S., & Katırcıoglu, S. (2019). Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research, 26(11), 10738-10745. doi:10.1007/s11356-019-04531-5 | es_ES |
dc.description.references | Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514 | es_ES |
dc.description.references | Akinyele, D., Belikov, J., & Levron, Y. (2018). Challenges of Microgrids in Remote Communities: A STEEP Model Application. Energies, 11(2), 432. doi:10.3390/en11020432 | es_ES |
dc.description.references | Benamar, A., Travaillé, P., Clairand, J.-M., & Escrivá-Escrivá, G. (2020). Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology, 10(2), 593. doi:10.18517/ijaseit.10.2.10815 | es_ES |
dc.description.references | Lakshmi, M., & Hemamalini, S. (2018). Nonisolated High Gain DC–DC Converter for DC Microgrids. IEEE Transactions on Industrial Electronics, 65(2), 1205-1212. doi:10.1109/tie.2017.2733463 | es_ES |
dc.description.references | Yin, C., Wu, H., Locment, F., & Sechilariu, M. (2017). Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 132, 14-27. doi:10.1016/j.enconman.2016.11.018 | es_ES |
dc.description.references | Chen, D., Xu, Y., & Huang, A. Q. (2017). Integration of DC Microgrids as Virtual Synchronous Machines Into the AC Grid. IEEE Transactions on Industrial Electronics, 64(9), 7455-7466. doi:10.1109/tie.2017.2674621 | es_ES |
dc.description.references | Abhinav, S., Schizas, I. D., Ferrese, F., & Davoudi, A. (2017). Optimization-Based AC Microgrid Synchronization. IEEE Transactions on Industrial Informatics, 13(5), 2339-2349. doi:10.1109/tii.2017.2702623 | es_ES |
dc.description.references | Liu, Z., Su, M., Sun, Y., Li, L., Han, H., Zhang, X., & Zheng, M. (2019). Optimal criterion and global/sub-optimal control schemes of decentralized economical dispatch for AC microgrid. International Journal of Electrical Power & Energy Systems, 104, 38-42. doi:10.1016/j.ijepes.2018.06.045 | es_ES |
dc.description.references | Khatibzadeh, A., Besmi, M., Mahabadi, A., & Reza Haghifam, M. (2017). Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages. Energies, 10(2), 169. doi:10.3390/en10020169 | es_ES |
dc.description.references | Asghar, F., Talha, M., & Kim, S. (2017). Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid. Energies, 10(6), 760. doi:10.3390/en10060760 | es_ES |
dc.description.references | Lotfi, H., & Khodaei, A. (2017). Hybrid AC/DC microgrid planning. Energy, 118, 37-46. doi:10.1016/j.energy.2016.12.015 | es_ES |
dc.description.references | Kerdphol, T., Rahman, F., & Mitani, Y. (2018). Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration. Energies, 11(4), 981. doi:10.3390/en11040981 | es_ES |
dc.description.references | Rodrigues, Y. R., Zambroni de Souza, A. C., & Ribeiro, P. F. (2018). An inclusive methodology for Plug-in electrical vehicle operation with G2V and V2G in smart microgrid environments. International Journal of Electrical Power & Energy Systems, 102, 312-323. doi:10.1016/j.ijepes.2018.04.037 | es_ES |
dc.description.references | Ghosh, S., & Chattopadhyay, S. (2020). Three-Loop-Based Universal Control Architecture for Decentralized Operation of Multiple Inverters in an Autonomous Grid-Interactive Microgrid. IEEE Transactions on Industry Applications, 56(2), 1966-1979. doi:10.1109/tia.2020.2964746 | es_ES |
dc.description.references | Mohapatra, S. R., & Agarwal, V. (2020). Model Predictive Control for Flexible Reduction of Active Power Oscillation in Grid-Tied Multilevel Inverters Under Unbalanced and Distorted Microgrid Conditions. IEEE Transactions on Industry Applications, 56(2), 1107-1115. doi:10.1109/tia.2019.2957480 | es_ES |
dc.description.references | Ziouani, I., Boukhetala, D., Darcherif, A.-M., Amghar, B., & El Abbassi, I. (2018). Hierarchical control for flexible microgrid based on three-phase voltage source inverters operated in parallel. International Journal of Electrical Power & Energy Systems, 95, 188-201. doi:10.1016/j.ijepes.2017.08.027 | es_ES |
dc.description.references | Golshannavaz, S., & Mortezapour, V. (2018). A generalized droop control approach for islanded DC microgrids hosting parallel-connected DERs. Sustainable Cities and Society, 36, 237-245. doi:10.1016/j.scs.2017.09.038 | es_ES |
dc.description.references | Safa, A., Madjid Berkouk, E. L., Messlem, Y., & Gouichiche, A. (2018). A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions. International Journal of Electrical Power & Energy Systems, 100, 253-264. doi:10.1016/j.ijepes.2018.02.042 | es_ES |
dc.description.references | Andishgar, M. H., Gholipour, E., & Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043-1060. doi:10.1016/j.rser.2017.05.267 | es_ES |
dc.description.references | Li, Z., Zang, C., Zeng, P., Yu, H., Li, S., & Bian, J. (2017). Control of a Grid-Forming Inverter Based on Sliding-Mode and Mixed ${H_2}/{H_\infty }$ Control. IEEE Transactions on Industrial Electronics, 64(5), 3862-3872. doi:10.1109/tie.2016.2636798 | es_ES |
dc.description.references | Hossain, M. A., Pota, H. R., Squartini, S., & Abdou, A. F. (2019). Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renewable Energy, 136, 746-757. doi:10.1016/j.renene.2019.01.005 | es_ES |
dc.description.references | Shokoohi, S., Golshannavaz, S., Khezri, R., & Bevrani, H. (2018). Intelligent secondary control in smart microgrids: an on-line approach for islanded operations. Optimization and Engineering, 19(4), 917-936. doi:10.1007/s11081-018-9382-9 | es_ES |
dc.description.references | Safari, A., Babaei, F., & Farrokhifar, M. (2019). A load frequency control using a PSO-based ANN for micro-grids in the presence of electric vehicles. International Journal of Ambient Energy, 42(6), 688-700. doi:10.1080/01430750.2018.1563811 | es_ES |
dc.description.references | Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., & Mustafa, M. W. (2016). Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review. Renewable and Sustainable Energy Reviews, 54, 1592-1610. doi:10.1016/j.rser.2015.10.079 | es_ES |
dc.description.references | Rokrok, E., Shafie-khah, M., & Catalão, J. P. S. (2018). Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renewable and Sustainable Energy Reviews, 82, 3225-3235. doi:10.1016/j.rser.2017.10.022 | es_ES |
dc.description.references | Bouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., & Benghanem, M. (2015). A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews, 44, 751-766. doi:10.1016/j.rser.2015.01.016 | es_ES |
dc.description.references | Vásquez, V., Ortega, L. M., Romero, D., Ortega, R., Carranza, O., & Rodríguez, J. J. (2017). Comparison of methods for controllers design of single phase inverter operating in island mode in a microgrid: Review. Renewable and Sustainable Energy Reviews, 76, 256-267. doi:10.1016/j.rser.2017.03.060 | es_ES |
dc.description.references | Shen, X., Wang, H., Li, J., Su, Q., & Gao, L. (2019). Distributed Secondary Voltage Control of Islanded Microgrids Based on RBF-Neural-Network Sliding-Mode Technique. IEEE Access, 7, 65616-65623. doi:10.1109/access.2019.2915509 | es_ES |
dc.description.references | Arbab-Zavar, B., Palacios-Garcia, E., Vasquez, J., & Guerrero, J. (2019). Smart Inverters for Microgrid Applications: A Review. Energies, 12(5), 840. doi:10.3390/en12050840 | es_ES |
dc.description.references | Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212, 340-361. doi:10.1016/j.apenergy.2017.12.048 | es_ES |
dc.description.references | Kerdphol, T., Rahman, F., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration. Sustainability, 9(5), 773. doi:10.3390/su9050773 | es_ES |
dc.description.references | Hajiakbari Fini, M., & Hamedani Golshan, M. E. (2018). Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electric Power Systems Research, 154, 13-22. doi:10.1016/j.epsr.2017.08.007 | es_ES |
dc.description.references | Jung, J., & Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180-191. doi:10.1016/j.rser.2016.10.061 | es_ES |
dc.description.references | Baharizadeh, M., Karshenas, H. R., & Guerrero, J. M. (2018). An improved power control strategy for hybrid AC-DC microgrids. International Journal of Electrical Power & Energy Systems, 95, 364-373. doi:10.1016/j.ijepes.2017.08.036 | es_ES |
dc.description.references | Serban, I., & Ion, C. P. (2017). Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability. International Journal of Electrical Power & Energy Systems, 89, 94-105. doi:10.1016/j.ijepes.2017.01.009 | es_ES |
dc.description.references | Tavakoli, M., Shokridehaki, F., Marzband, M., Godina, R., & Pouresmaeil, E. (2018). A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustainable Cities and Society, 41, 332-340. doi:10.1016/j.scs.2018.05.035 | es_ES |
dc.description.references | Cagnano, A., De Tuglie, E., & Cicognani, L. (2017). Prince — Electrical Energy Systems Lab. Electric Power Systems Research, 148, 10-17. doi:10.1016/j.epsr.2017.03.011 | es_ES |
dc.description.references | Zhang, H., Meng, W., Qi, J., Wang, X., & Zheng, W. X. (2019). Distributed Load Sharing Under False Data Injection Attack in an Inverter-Based Microgrid. IEEE Transactions on Industrial Electronics, 66(2), 1543-1551. doi:10.1109/tie.2018.2793241 | es_ES |
dc.description.references | Yang, L., Hu, Z., Xie, S., Kong, S., & Lin, W. (2019). Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster. Electric Power Systems Research, 173, 71-85. doi:10.1016/j.epsr.2019.04.011 | es_ES |
dc.description.references | Rahman, F. S., Kerdphol, T., Watanabe, M., & Mitani, Y. (2019). Optimization of virtual inertia considering system frequency protection scheme. Electric Power Systems Research, 170, 294-302. doi:10.1016/j.epsr.2019.01.025 | es_ES |
dc.description.references | Farrokhabadi, M., Canizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza-Araya, P. A., … Reilly, J. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. doi:10.1109/tpwrs.2019.2925703 | es_ES |
dc.description.references | Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A. V., & Alan, İ. (2017). Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 72, 205-214. doi:10.1016/j.rser.2017.01.064 | es_ES |
dc.description.references | Rajesh, K. S., Dash, S. S., Rajagopal, R., & Sridhar, R. (2017). A review on control of ac microgrid. Renewable and Sustainable Energy Reviews, 71, 814-819. doi:10.1016/j.rser.2016.12.106 | es_ES |
dc.description.references | Marzal, S., Salas, R., González-Medina, R., Garcerá, G., & Figueres, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews, 82, 3610-3622. doi:10.1016/j.rser.2017.10.101 | es_ES |
dc.description.references | Singh, A., & Suhag, S. (2018). Trends in Islanded Microgrid Frequency Regulation – A Review. Smart Science, 7(2), 91-115. doi:10.1080/23080477.2018.1540380 | es_ES |
dc.description.references | Hou, X., Sun, Y., Lu, J., Zhang, X., Koh, L. H., Su, M., & Guerrero, J. M. (2018). Distributed Hierarchical Control of AC Microgrid Operating in Grid-Connected, Islanded and Their Transition Modes. IEEE Access, 6, 77388-77401. doi:10.1109/access.2018.2882678 | es_ES |
dc.description.references | SHI, R., ZHANG, X., HU, C., XU, H., GU, J., & CAO, W. (2017). Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids. Journal of Modern Power Systems and Clean Energy, 6(3), 482-494. doi:10.1007/s40565-017-0347-3 | es_ES |
dc.description.references | Toub, M., Bijaieh, M. M., Weaver, W. W., III, R. D. R., Maaroufi, M., & Aniba, G. (2019). Droop Control in DQ Coordinates for Fixed Frequency Inverter-Based AC Microgrids. Electronics, 8(10), 1168. doi:10.3390/electronics8101168 | es_ES |
dc.description.references | Shuai, Z., Fang, J., Ning, F., & Shen, Z. J. (2018). Hierarchical structure and bus voltage control of DC microgrid. Renewable and Sustainable Energy Reviews, 82, 3670-3682. doi:10.1016/j.rser.2017.10.096 | es_ES |
dc.description.references | Agundis-Tinajero, G., Segundo-Ramírez, J., Visairo-Cruz, N., Savaghebi, M., Guerrero, J. M., & Barocio, E. (2019). Power flow modeling of islanded AC microgrids with hierarchical control. International Journal of Electrical Power & Energy Systems, 105, 28-36. doi:10.1016/j.ijepes.2018.08.002 | es_ES |
dc.description.references | Ali, A., Li, W., Hussain, R., He, X., Williams, B., & Memon, A. (2017). Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China. Sustainability, 9(7), 1146. doi:10.3390/su9071146 | es_ES |
dc.description.references | Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681-704. doi:10.1016/j.energy.2017.02.174 | es_ES |
dc.description.references | Yazdi, F., & Hosseinian, S. H. (2019). A novel «Smart Branch» for power quality improvement in microgrids. International Journal of Electrical Power & Energy Systems, 110, 161-170. doi:10.1016/j.ijepes.2019.02.026 | es_ES |
dc.description.references | Bassey, O., Butler-Purry, K. L., & Chen, B. (2020). Dynamic Modeling of Sequential Service Restoration in Islanded Single Master Microgrids. IEEE Transactions on Power Systems, 35(1), 202-214. doi:10.1109/tpwrs.2019.2929268 | es_ES |
dc.description.references | Chang, E.-C. (2018). Study and Application of Intelligent Sliding Mode Control for Voltage Source Inverters. Energies, 11(10), 2544. doi:10.3390/en11102544 | es_ES |
dc.description.references | Das, D., Gurrala, G., & Shenoy, U. J. (2018). Linear Quadratic Regulator-Based Bumpless Transfer in Microgrids. IEEE Transactions on Smart Grid, 9(1), 416-425. doi:10.1109/tsg.2016.2580159 | es_ES |
dc.description.references | Nguyen, H. K., Khodaei, A., & Han, Z. (2018). Incentive Mechanism Design for Integrated Microgrids in Peak Ramp Minimization Problem. IEEE Transactions on Smart Grid, 9(6), 5774-5785. doi:10.1109/tsg.2017.2696903 | es_ES |
dc.description.references | Xiao, Z., Guerrero, J. M., Shuang, J., Sera, D., Schaltz, E., & Vásquez, J. C. (2018). Flat tie-line power scheduling control of grid-connected hybrid microgrids. Applied Energy, 210, 786-799. doi:10.1016/j.apenergy.2017.07.066 | es_ES |
dc.description.references | Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). A Decentralized Robust Mixed $H_{{2}}/ H_{{{\infty }}}$ Voltage Control Scheme to Improve Small/Large-Signal Stability and FRT Capability of Islanded Multi-DER Microgrid Considering Load Disturbances. IEEE Systems Journal, 12(3), 2610-2621. doi:10.1109/jsyst.2017.2716351 | es_ES |
dc.description.references | Panda, S. K., & Ghosh, A. (2020). A Computational Analysis of Interfacing Converters with Advanced Control Methodologies for Microgrid Application. Technology and Economics of Smart Grids and Sustainable Energy, 5(1). doi:10.1007/s40866-020-0077-x | es_ES |
dc.description.references | Zhang, L., Chen, K., Lyu, L., & Cai, G. (2019). Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm. Energies, 12(6), 1162. doi:10.3390/en12061162 | es_ES |
dc.description.references | Zhu, K., Sun, P., Zhou, L., Du, X., & Luo, Q. (2020). Frequency-Division Virtual Impedance Shaping Control Method for Grid-Connected Inverters in a Weak and Distorted Grid. IEEE Transactions on Power Electronics, 35(8), 8116-8129. doi:10.1109/tpel.2019.2963345 | es_ES |
dc.description.references | Samavati, E., & Mohammadi, H. R. (2019). Simultaneous voltage and current harmonics compensation in islanded/grid-connected microgrids using virtual impedance concept. Sustainable Energy, Grids and Networks, 20, 100258. doi:10.1016/j.segan.2019.100258 | es_ES |
dc.description.references | Shi, K., Ye, H., Song, W., & Zhou, G. (2018). Virtual Inertia Control Strategy in Microgrid Based on Virtual Synchronous Generator Technology. IEEE Access, 6, 27949-27957. doi:10.1109/access.2018.2839737 | es_ES |
dc.description.references | Fathi, A., Shafiee, Q., & Bevrani, H. (2018). Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator. IEEE Transactions on Power Systems, 33(6), 6289-6297. doi:10.1109/tpwrs.2018.2850880 | es_ES |
dc.description.references | Amoateng, D. O., Al Hosani, M., Elmoursi, M. S., Turitsyn, K., & Kirtley, J. L. (2018). Adaptive Voltage and Frequency Control of Islanded Multi-Microgrids. IEEE Transactions on Power Systems, 33(4), 4454-4465. doi:10.1109/tpwrs.2017.2780986 | es_ES |
dc.description.references | Sopinka, A., & Pitt, L. (2013). British Columbia Electricity Supply Gap Strategy: A Redefinition of Self-Sufficiency. The Electricity Journal, 26(3), 81-88. doi:10.1016/j.tej.2013.03.003 | es_ES |
dc.description.references | Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). Decentralized Sliding Mode Control of WG/PV/FC Microgrids Under Unbalanced and Nonlinear Load Conditions for On- and Off-Grid Modes. IEEE Systems Journal, 12(4), 3108-3119. doi:10.1109/jsyst.2017.2761792 | es_ES |
dc.description.references | Gholami, S., Saha, S., & Aldeen, M. (2018). Robust multiobjective control method for power sharing among distributed energy resources in islanded microgrids with unbalanced and nonlinear loads. International Journal of Electrical Power & Energy Systems, 94, 321-338. doi:10.1016/j.ijepes.2017.07.012 | es_ES |
dc.description.references | Mousazadeh Mousavi, S. Y., Jalilian, A., Savaghebi, M., & Guerrero, J. M. (2018). Autonomous Control of Current- and Voltage-Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids. IEEE Transactions on Power Electronics, 33(11), 9375-9386. doi:10.1109/tpel.2018.2792780 | es_ES |
dc.description.references | Fani, B., Zandi, F., & Karami-Horestani, A. (2018). An enhanced decentralized reactive power sharing strategy for inverter-based microgrid. International Journal of Electrical Power & Energy Systems, 98, 531-542. doi:10.1016/j.ijepes.2017.12.023 | es_ES |
dc.description.references | Khayat, Y., Naderi, M., Shafiee, Q., Batmani, Y., Fathi, M., Guerrero, J. M., & Bevrani, H. (2019). Decentralized Optimal Frequency Control in Autonomous Microgrids. IEEE Transactions on Power Systems, 34(3), 2345-2353. doi:10.1109/tpwrs.2018.2889671 | es_ES |
dc.description.references | Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245 | es_ES |
dc.description.references | Alyazidi, N. M., Mahmoud, M. S., & Abouheaf, M. I. (2018). Adaptive critics based cooperative control scheme for islanded Microgrids. Neurocomputing, 272, 532-541. doi:10.1016/j.neucom.2017.07.027 | es_ES |
dc.description.references | Buduma, P., & Panda, G. (2018). Robust nested loop control scheme for LCL‐filtered inverter‐based DG unit in grid‐connected and islanded modes. IET Renewable Power Generation, 12(11), 1269-1285. doi:10.1049/iet-rpg.2017.0803 | es_ES |
dc.description.references | Batiyah, S., Sharma, R., Abdelwahed, S., & Zohrabi, N. (2020). An MPC-based power management of standalone DC microgrid with energy storage. International Journal of Electrical Power & Energy Systems, 120, 105949. doi:10.1016/j.ijepes.2020.105949 | es_ES |
dc.description.references | Baghaee, H. R., Mirsalim, M., Gharehpetan, G. B., & Talebi, H. A. (2018). Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations Using Radial Basis Function Neural Networks. IEEE Systems Journal, 12(3), 2749-2759. doi:10.1109/jsyst.2016.2645165 | es_ES |
dc.description.references | Benhalima, S., Miloud, R., & Chandra, A. (2018). Real-Time Implementation of Robust Control Strategies Based on Sliding Mode Control for Standalone Microgrids Supplying Non-Linear Loads. Energies, 11(10), 2590. doi:10.3390/en11102590 | es_ES |
dc.description.references | California Carbon Market Watch: A Comprehensive Analysis of the Golden State’s Cap-and-Trade Program, Year One—2012–2013. 2014https://www.issuelab.org/resource/california-carbon-market-watch-a-comprehensive-analysis-of-the-golden-state-s-cap-and-trade-program-year-one-2012-2013.html | es_ES |
dc.description.references | Exploring the Best Possible Trade-Off between Competing Objectives: Identifying the Pareto Fronthttps://pythonhealthcare.org/2018/09/27/93-exploring-the-best-possible-trade-off-between-competing-objectives-identifying-the-p | es_ES |
dc.description.references | Teekaraman, Y., Kuppusamy, R., & Nikolovski, S. (2019). Solution for Voltage and Frequency Regulation in Standalone Microgrid using Hybrid Multiobjective Symbiotic Organism Search Algorithm. Energies, 12(14), 2812. doi:10.3390/en12142812 | es_ES |
dc.description.references | Zeng, Z., Li, H., Tang, S., Yang, H., & Zhao, R. (2016). Multi‐objective control of multi‐functional grid‐connected inverter for renewable energy integration and power quality service. IET Power Electronics, 9(4), 761-770. doi:10.1049/iet-pel.2015.0317 | es_ES |
dc.description.references | Wu, Y., Guerrero, J. M., Vasquez, J. C., & Wu, Y. (2019). Bumpless Optimal Control over Multi-Objective Microgrids with Mode-Dependent Controllers. Energies, 12(19), 3619. doi:10.3390/en12193619 | es_ES |
dc.description.references | Sedighizadeh, M., Esmaili, M., & Eisapour-Moarref, A. (2017). Voltage and frequency regulation in autonomous microgrids using Hybrid Big Bang-Big Crunch algorithm. Applied Soft Computing, 52, 176-189. doi:10.1016/j.asoc.2016.12.031 | es_ES |
dc.description.references | Miao, L., Zhang, Y., Xiao, X., Guo, Q., Zhang, J., Yildirim, T., & Liu, H. (2020). Multiobjective Coordinated Control Strategy for Grid-Connected Inverter under Unbalanced Voltage Conditions. Journal of Energy Engineering, 146(3), 04020005. doi:10.1061/(asce)ey.1943-7897.0000651 | es_ES |
dc.description.references | Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2016). Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy, 115, 1022-1041. doi:10.1016/j.energy.2016.09.007 | es_ES |
dc.description.references | Doyran, R. V., Sedighizadeh, M., Rezazadeh, A., & Alavi, S. M. M. (2020). Optimal allocation of passive filters and inverter based DGs joint with optimal feeder reconfiguration to improve power quality in a harmonic polluted microgrid. Renewable Energy Focus, 32, 63-78. doi:10.1016/j.ref.2019.12.001 | es_ES |
dc.description.references | Agnoletto, E. J., Silva de Castro, D., Neves, R. V. A., Quadros Machado, R., & Oliveira, V. A. (2019). An Optimal Energy Management Technique Using the $\epsilon$ -Constraint Method for Grid-Tied and Stand-Alone Battery-Based Microgrids. IEEE Access, 7, 165928-165942. doi:10.1109/access.2019.2954050 | es_ES |
dc.description.references | Hamidi, A., Nazarpour, D., & Golshannavaz, S. (2018). Multiobjective Scheduling of Microgrids to Harvest Higher Photovoltaic Energy. IEEE Transactions on Industrial Informatics, 14(1), 47-57. doi:10.1109/tii.2017.2717906 | es_ES |
dc.description.references | Garroussi, Z., Ellaia, R., El-ghazali-Talbi, & Lucas, J. (2020). A matheuristic for a bi-objective demand-side optimization for cooperative smart homes. Electrical Engineering, 102(4), 1913-1930. doi:10.1007/s00202-020-00997-6 | es_ES |
dc.description.references | Manas, M. (2018). Optimization of Distributed Generation Based Hybrid Renewable Energy System for a DC Micro-Grid Using Particle Swarm Optimization. Distributed Generation & Alternative Energy Journal, 33(4), 7-25. doi:10.1080/21563306.2018.12029912 | es_ES |
dc.description.references | Ye, B., Shi, X., Wang, X., & Wu, H. (2019). Optimisation configuration of hybrid AC/DC microgrid containing electric vehicles based on the NSGA‐II algorithm. The Journal of Engineering, 2019(10), 7229-7236. doi:10.1049/joe.2018.5043 | es_ES |
dc.description.references | Raju P, E. S. N., & Jain, T. (2017). Robust optimal centralized controller to mitigate the small signal instability in an islanded inverter based microgrid with active and passive loads. International Journal of Electrical Power & Energy Systems, 90, 225-236. doi:10.1016/j.ijepes.2017.02.011 | es_ES |
dc.description.references | Zhao, F., Yuan, J., & Wang, N. (2019). Dynamic Economic Dispatch Model of Microgrid Containing Energy Storage Components Based on a Variant of NSGA-II Algorithm. Energies, 12(5), 871. doi:10.3390/en12050871 | es_ES |
dc.description.references | Dissanayake, A. M., & Ekneligoda, N. C. (2020). Multiobjective Optimization of Droop-Controlled Distributed Generators in DC Microgrids. IEEE Transactions on Industrial Informatics, 16(4), 2423-2435. doi:10.1109/tii.2019.2931837 | es_ES |
dc.description.references | Brandao, D. I., Ferreira, W. M., Alonso, A. M. S., Tedeschi, E., & Marafao, F. P. (2020). Optimal Multiobjective Control of Low-Voltage AC Microgrids: Power Flow Regulation and Compensation of Reactive Power and Unbalance. IEEE Transactions on Smart Grid, 11(2), 1239-1252. doi:10.1109/tsg.2019.2933790 | es_ES |
dc.description.references | Ferreira, W. M., Meneghini, I. R., Brandao, D. I., & Guimarães, F. G. (2020). Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids. Applied Energy, 274, 115326. doi:10.1016/j.apenergy.2020.115326 | es_ES |
dc.description.references | Dehkordi, N. M., Sadati, N., & Hamzeh, M. (2018). Robust tuning of transient droop gains based on Kharitonov’s stability theorem in droop‐controlled microgrids. IET Generation, Transmission & Distribution, 12(14), 3495-3501. doi:10.1049/iet-gtd.2017.1767 | es_ES |
dc.description.references | Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Seeker optimization approach to dynamic PI based virtual impedance drooping for economic load sharing between PV and SOFC in an islanded microgrid. Sustainable Cities and Society, 37, 550-562. doi:10.1016/j.scs.2017.11.013 | es_ES |
dc.description.references | Praiselin, W. J., & Edward, J. B. (2017). Voltage Profile Improvement of Solar PV Grid – Connected Inverter with Micro Grid Operation using PI Controller. Energy Procedia, 117, 104-111. doi:10.1016/j.egypro.2017.05.112 | es_ES |
dc.description.references | Rajesh, K. S., Dash, S. S., & Rajagopal, R. (2019). Hybrid improved firefly-pattern search optimized fuzzy aided PID controller for automatic generation control of power systems with multi-type generations. Swarm and Evolutionary Computation, 44, 200-211. doi:10.1016/j.swevo.2018.03.005 | es_ES |
dc.description.references | Dragicevic, T. (2018). Dynamic Stabilization of DC Microgrids With Predictive Control of Point-of-Load Converters. IEEE Transactions on Power Electronics, 33(12), 10872-10884. doi:10.1109/tpel.2018.2801886 | es_ES |
dc.description.references | John, T., & Ping Lam, S. (2017). Voltage and frequency control during microgrid islanding in a multi‐area multi‐microgrid system. IET Generation, Transmission & Distribution, 11(6), 1502-1512. doi:10.1049/iet-gtd.2016.1113 | es_ES |
dc.description.references | Shan, Y., Hu, J., Li, Z., & Guerrero, J. M. (2018). A Model Predictive Control for Renewable Energy Based AC Microgrids Without Any PID Regulators. IEEE Transactions on Power Electronics, 33(11), 9122-9126. doi:10.1109/tpel.2018.2822314 | es_ES |
dc.description.references | Babqi, A. J., & Etemadi, A. H. (2017). MPC‐based microgrid control with supplementary fault current limitation and smooth transition mechanisms. IET Generation, Transmission & Distribution, 11(9), 2164-2172. doi:10.1049/iet-gtd.2016.1387 | es_ES |
dc.description.references | Ramya, K., & Rameshkumar, K. A. (2018). Fuzzy and De-Coupled d-q Control Strategy in Riven Bias Inverter for Islanding Operation in Microgrid. Journal of Computational and Theoretical Nanoscience, 15(6), 2121-2125. doi:10.1166/jctn.2018.7419 | es_ES |
dc.description.references | Sedaghati, R., & Shakarami, M. R. (2019). A novel control strategy and power management of hybrid PV/FC/SC/battery renewable power system-based grid-connected microgrid. Sustainable Cities and Society, 44, 830-843. doi:10.1016/j.scs.2018.11.014 | es_ES |
dc.description.references | Wang, Z., Huang, Z., Song, C., & Zhang, H. (2018). Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition. IEEE Transactions on Smart Grid, 9(2), 797-806. doi:10.1109/tsg.2016.2565667 | es_ES |
dc.description.references | Mahmud, K., Sahoo, A. K., Ravishankar, J., & Dong, Z. Y. (2019). Coordinated Multilayer Control for Energy Management of Grid-Connected AC Microgrids. IEEE Transactions on Industry Applications, 55(6), 7071-7081. doi:10.1109/tia.2019.2931490 | es_ES |
dc.description.references | Tabart, Q., Vechiu, I., Etxeberria, A., & Bacha, S. (2018). Hybrid Energy Storage System Microgrids Integration for Power Quality Improvement Using Four-Leg Three-Level NPC Inverter and Second-Order Sliding Mode Control. IEEE Transactions on Industrial Electronics, 65(1), 424-435. doi:10.1109/tie.2017.2723863 | es_ES |
dc.description.references | Yan, H., Zhou, X., Zhang, H., Yang, F., & Wu, Z.-G. (2019). A Novel Sliding Mode Estimation for Microgrid Control With Communication Time Delays. IEEE Transactions on Smart Grid, 10(2), 1509-1520. doi:10.1109/tsg.2017.2771493 | es_ES |
dc.description.references | Delghavi, M. B., & Yazdani, A. (2019). Sliding-Mode Control of AC Voltages and Currents of Dispatchable Distributed Energy Resources in Master-Slave-Organized Inverter-Based Microgrids. IEEE Transactions on Smart Grid, 10(1), 980-991. doi:10.1109/tsg.2017.2756935 | es_ES |
dc.description.references | Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2021). OC/OL Protection of Droop-Controlled and Directly Voltage-Controlled Microgrids Using TMF/ANN-Based Fault Detection and Discrimination. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(3), 3254-3265. doi:10.1109/jestpe.2019.2958925 | es_ES |
dc.description.references | Yang, Q., Le Blond, S., Aggarwal, R., Wang, Y., & Li, J. (2017). New ANN method for multi-terminal HVDC protection relaying. Electric Power Systems Research, 148, 192-201. doi:10.1016/j.epsr.2017.03.024 | es_ES |
dc.description.references | Bonala, A. K., & Sandepudi, S. R. (2019). Centralised model‐predictive decoupled active–reactive power control for three‐level neutral point clamped photovoltaic inverter with preference selective index‐based objective prioritisation. IET Power Electronics, 12(4), 840-851. doi:10.1049/iet-pel.2018.5825 | es_ES |
dc.description.references | Tran, T., Yoon, S.-J., & Kim, K.-H. (2018). An LQR-Based Controller Design for an LCL-Filtered Grid-Connected Inverter in Discrete-Time State-Space under Distorted Grid Environment. Energies, 11(8), 2062. doi:10.3390/en11082062 | es_ES |
dc.description.references | Anbarasu, E., Pandian S, M. V., & Basha, A. R. (2020). An improved power conditioning system for grid integration of solar power using ANFIS based FOPID controller. Microprocessors and Microsystems, 74, 103030. doi:10.1016/j.micpro.2020.103030 | es_ES |
dc.description.references | Kirankumar, B., Siva Reddy, Y. V., & Vijayakumar, M. (2017). Multilevel inverter with space vector modulation: intelligence direct torque control of induction motor. IET Power Electronics, 10(10), 1129-1137. doi:10.1049/iet-pel.2016.0287 | es_ES |
dc.description.references | Vinayagam, A., Alqumsan, A. A., Swarna, K. S. V., Khoo, S. Y., & Stojcevski, A. (2018). Intelligent control strategy in the islanded network of a solar PV microgrid. Electric Power Systems Research, 155, 93-103. doi:10.1016/j.epsr.2017.10.006 | es_ES |
dc.description.references | Han, Y., Zhang, K., Li, H., Coelho, E. A. A., & Guerrero, J. M. (2018). MAS-Based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters: A Comprehensive Overview. IEEE Transactions on Power Electronics, 33(8), 6488-6508. doi:10.1109/tpel.2017.2761438 | es_ES |
dc.description.references | Antonio de Souza Ribeiro, L., Freijedo, F. D., de Bosio, F., Soares Lima, M., Guerrero, J. M., & Pastorelli, M. (2018). Full Discrete Modeling, Controller Design, and Sensitivity Analysis for High-Performance Grid-Forming Converters in Islanded Microgrids. IEEE Transactions on Industry Applications, 54(6), 6267-6278. doi:10.1109/tia.2018.2847635 | es_ES |
dc.description.references | De Bosio, F., de S. Ribeiro, L. A., Freijedo, F. D., Pastorelli, M., & Guerrero, J. M. (2017). Discrete-Time Domain Modeling of Voltage Source Inverters in Standalone Applications: Enhancement of Regulators Performance by Means of Smith Predictor. IEEE Transactions on Power Electronics, 32(10), 8100-8114. doi:10.1109/tpel.2016.2632527 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |