- -

Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzales-Zurita, Óscar es_ES
dc.contributor.author Clairand, Jean-Michel es_ES
dc.contributor.author Peñalvo-López, Elisa es_ES
dc.contributor.author Escrivá-Escrivá, Guillermo es_ES
dc.date.accessioned 2021-06-04T03:32:41Z
dc.date.available 2021-06-04T03:32:41Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167328
dc.description.abstract [EN] Microgrids have emerged as a solution to address new challenges in power systems with the integration of distributed energy resources (DER). Inverter-based microgrids (IBMG) need to implement proper control systems to avoid stability and reliability issues. Thus, several researchers have introduced multi-objective control strategies for distributed generation on IBMG. This paper presents a review of the different approaches that have been proposed by several authors of multi-objective control. This work describes the main features of the inverter as a key component of microgrids. Details related to accomplishing efficient generation from a control systems' view have been observed. This study addresses the potential of multi-objective control to overcome conflicting objectives with balanced results. Finally, this paper shows future trends in control objectives and discussion of the different multi-objective approaches. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Distributed energy resources es_ES
dc.subject Inverter es_ES
dc.subject Microgrid es_ES
dc.subject Multi-objective control es_ES
dc.subject Renewable energy es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13133483 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Gonzales-Zurita, Ó.; Clairand, J.; Peñalvo-López, E.; Escrivá-Escrivá, G. (2020). Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies. 13(13):1-29. https://doi.org/10.3390/en13133483 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13133483 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\423724 es_ES
dc.description.references Ross, M., Abbey, C., Bouffard, F., & Joos, G. (2015). Multiobjective Optimization Dispatch for Microgrids With a High Penetration of Renewable Generation. IEEE Transactions on Sustainable Energy, 6(4), 1306-1314. doi:10.1109/tste.2015.2428676 es_ES
dc.description.references Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5(1). doi:10.1186/s41601-019-0147-z es_ES
dc.description.references Katircioğlu, S., Abasiz, T., Sezer, S., & Katırcıoglu, S. (2019). Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research, 26(11), 10738-10745. doi:10.1007/s11356-019-04531-5 es_ES
dc.description.references Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514 es_ES
dc.description.references Akinyele, D., Belikov, J., & Levron, Y. (2018). Challenges of Microgrids in Remote Communities: A STEEP Model Application. Energies, 11(2), 432. doi:10.3390/en11020432 es_ES
dc.description.references Benamar, A., Travaillé, P., Clairand, J.-M., & Escrivá-Escrivá, G. (2020). Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology, 10(2), 593. doi:10.18517/ijaseit.10.2.10815 es_ES
dc.description.references Lakshmi, M., & Hemamalini, S. (2018). Nonisolated High Gain DC–DC Converter for DC Microgrids. IEEE Transactions on Industrial Electronics, 65(2), 1205-1212. doi:10.1109/tie.2017.2733463 es_ES
dc.description.references Yin, C., Wu, H., Locment, F., & Sechilariu, M. (2017). Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 132, 14-27. doi:10.1016/j.enconman.2016.11.018 es_ES
dc.description.references Chen, D., Xu, Y., & Huang, A. Q. (2017). Integration of DC Microgrids as Virtual Synchronous Machines Into the AC Grid. IEEE Transactions on Industrial Electronics, 64(9), 7455-7466. doi:10.1109/tie.2017.2674621 es_ES
dc.description.references Abhinav, S., Schizas, I. D., Ferrese, F., & Davoudi, A. (2017). Optimization-Based AC Microgrid Synchronization. IEEE Transactions on Industrial Informatics, 13(5), 2339-2349. doi:10.1109/tii.2017.2702623 es_ES
dc.description.references Liu, Z., Su, M., Sun, Y., Li, L., Han, H., Zhang, X., & Zheng, M. (2019). Optimal criterion and global/sub-optimal control schemes of decentralized economical dispatch for AC microgrid. International Journal of Electrical Power & Energy Systems, 104, 38-42. doi:10.1016/j.ijepes.2018.06.045 es_ES
dc.description.references Khatibzadeh, A., Besmi, M., Mahabadi, A., & Reza Haghifam, M. (2017). Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages. Energies, 10(2), 169. doi:10.3390/en10020169 es_ES
dc.description.references Asghar, F., Talha, M., & Kim, S. (2017). Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid. Energies, 10(6), 760. doi:10.3390/en10060760 es_ES
dc.description.references Lotfi, H., & Khodaei, A. (2017). Hybrid AC/DC microgrid planning. Energy, 118, 37-46. doi:10.1016/j.energy.2016.12.015 es_ES
dc.description.references Kerdphol, T., Rahman, F., & Mitani, Y. (2018). Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration. Energies, 11(4), 981. doi:10.3390/en11040981 es_ES
dc.description.references Rodrigues, Y. R., Zambroni de Souza, A. C., & Ribeiro, P. F. (2018). An inclusive methodology for Plug-in electrical vehicle operation with G2V and V2G in smart microgrid environments. International Journal of Electrical Power & Energy Systems, 102, 312-323. doi:10.1016/j.ijepes.2018.04.037 es_ES
dc.description.references Ghosh, S., & Chattopadhyay, S. (2020). Three-Loop-Based Universal Control Architecture for Decentralized Operation of Multiple Inverters in an Autonomous Grid-Interactive Microgrid. IEEE Transactions on Industry Applications, 56(2), 1966-1979. doi:10.1109/tia.2020.2964746 es_ES
dc.description.references Mohapatra, S. R., & Agarwal, V. (2020). Model Predictive Control for Flexible Reduction of Active Power Oscillation in Grid-Tied Multilevel Inverters Under Unbalanced and Distorted Microgrid Conditions. IEEE Transactions on Industry Applications, 56(2), 1107-1115. doi:10.1109/tia.2019.2957480 es_ES
dc.description.references Ziouani, I., Boukhetala, D., Darcherif, A.-M., Amghar, B., & El Abbassi, I. (2018). Hierarchical control for flexible microgrid based on three-phase voltage source inverters operated in parallel. International Journal of Electrical Power & Energy Systems, 95, 188-201. doi:10.1016/j.ijepes.2017.08.027 es_ES
dc.description.references Golshannavaz, S., & Mortezapour, V. (2018). A generalized droop control approach for islanded DC microgrids hosting parallel-connected DERs. Sustainable Cities and Society, 36, 237-245. doi:10.1016/j.scs.2017.09.038 es_ES
dc.description.references Safa, A., Madjid Berkouk, E. L., Messlem, Y., & Gouichiche, A. (2018). A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions. International Journal of Electrical Power & Energy Systems, 100, 253-264. doi:10.1016/j.ijepes.2018.02.042 es_ES
dc.description.references Andishgar, M. H., Gholipour, E., & Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043-1060. doi:10.1016/j.rser.2017.05.267 es_ES
dc.description.references Li, Z., Zang, C., Zeng, P., Yu, H., Li, S., & Bian, J. (2017). Control of a Grid-Forming Inverter Based on Sliding-Mode and Mixed ${H_2}/{H_\infty }$ Control. IEEE Transactions on Industrial Electronics, 64(5), 3862-3872. doi:10.1109/tie.2016.2636798 es_ES
dc.description.references Hossain, M. A., Pota, H. R., Squartini, S., & Abdou, A. F. (2019). Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renewable Energy, 136, 746-757. doi:10.1016/j.renene.2019.01.005 es_ES
dc.description.references Shokoohi, S., Golshannavaz, S., Khezri, R., & Bevrani, H. (2018). Intelligent secondary control in smart microgrids: an on-line approach for islanded operations. Optimization and Engineering, 19(4), 917-936. doi:10.1007/s11081-018-9382-9 es_ES
dc.description.references Safari, A., Babaei, F., & Farrokhifar, M. (2019). A load frequency control using a PSO-based ANN for micro-grids in the presence of electric vehicles. International Journal of Ambient Energy, 42(6), 688-700. doi:10.1080/01430750.2018.1563811 es_ES
dc.description.references Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., & Mustafa, M. W. (2016). Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review. Renewable and Sustainable Energy Reviews, 54, 1592-1610. doi:10.1016/j.rser.2015.10.079 es_ES
dc.description.references Rokrok, E., Shafie-khah, M., & Catalão, J. P. S. (2018). Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renewable and Sustainable Energy Reviews, 82, 3225-3235. doi:10.1016/j.rser.2017.10.022 es_ES
dc.description.references Bouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., & Benghanem, M. (2015). A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews, 44, 751-766. doi:10.1016/j.rser.2015.01.016 es_ES
dc.description.references Vásquez, V., Ortega, L. M., Romero, D., Ortega, R., Carranza, O., & Rodríguez, J. J. (2017). Comparison of methods for controllers design of single phase inverter operating in island mode in a microgrid: Review. Renewable and Sustainable Energy Reviews, 76, 256-267. doi:10.1016/j.rser.2017.03.060 es_ES
dc.description.references Shen, X., Wang, H., Li, J., Su, Q., & Gao, L. (2019). Distributed Secondary Voltage Control of Islanded Microgrids Based on RBF-Neural-Network Sliding-Mode Technique. IEEE Access, 7, 65616-65623. doi:10.1109/access.2019.2915509 es_ES
dc.description.references Arbab-Zavar, B., Palacios-Garcia, E., Vasquez, J., & Guerrero, J. (2019). Smart Inverters for Microgrid Applications: A Review. Energies, 12(5), 840. doi:10.3390/en12050840 es_ES
dc.description.references Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212, 340-361. doi:10.1016/j.apenergy.2017.12.048 es_ES
dc.description.references Kerdphol, T., Rahman, F., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration. Sustainability, 9(5), 773. doi:10.3390/su9050773 es_ES
dc.description.references Hajiakbari Fini, M., & Hamedani Golshan, M. E. (2018). Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electric Power Systems Research, 154, 13-22. doi:10.1016/j.epsr.2017.08.007 es_ES
dc.description.references Jung, J., & Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180-191. doi:10.1016/j.rser.2016.10.061 es_ES
dc.description.references Baharizadeh, M., Karshenas, H. R., & Guerrero, J. M. (2018). An improved power control strategy for hybrid AC-DC microgrids. International Journal of Electrical Power & Energy Systems, 95, 364-373. doi:10.1016/j.ijepes.2017.08.036 es_ES
dc.description.references Serban, I., & Ion, C. P. (2017). Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability. International Journal of Electrical Power & Energy Systems, 89, 94-105. doi:10.1016/j.ijepes.2017.01.009 es_ES
dc.description.references Tavakoli, M., Shokridehaki, F., Marzband, M., Godina, R., & Pouresmaeil, E. (2018). A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustainable Cities and Society, 41, 332-340. doi:10.1016/j.scs.2018.05.035 es_ES
dc.description.references Cagnano, A., De Tuglie, E., & Cicognani, L. (2017). Prince — Electrical Energy Systems Lab. Electric Power Systems Research, 148, 10-17. doi:10.1016/j.epsr.2017.03.011 es_ES
dc.description.references Zhang, H., Meng, W., Qi, J., Wang, X., & Zheng, W. X. (2019). Distributed Load Sharing Under False Data Injection Attack in an Inverter-Based Microgrid. IEEE Transactions on Industrial Electronics, 66(2), 1543-1551. doi:10.1109/tie.2018.2793241 es_ES
dc.description.references Yang, L., Hu, Z., Xie, S., Kong, S., & Lin, W. (2019). Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster. Electric Power Systems Research, 173, 71-85. doi:10.1016/j.epsr.2019.04.011 es_ES
dc.description.references Rahman, F. S., Kerdphol, T., Watanabe, M., & Mitani, Y. (2019). Optimization of virtual inertia considering system frequency protection scheme. Electric Power Systems Research, 170, 294-302. doi:10.1016/j.epsr.2019.01.025 es_ES
dc.description.references Farrokhabadi, M., Canizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza-Araya, P. A., … Reilly, J. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. doi:10.1109/tpwrs.2019.2925703 es_ES
dc.description.references Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A. V., & Alan, İ. (2017). Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 72, 205-214. doi:10.1016/j.rser.2017.01.064 es_ES
dc.description.references Rajesh, K. S., Dash, S. S., Rajagopal, R., & Sridhar, R. (2017). A review on control of ac microgrid. Renewable and Sustainable Energy Reviews, 71, 814-819. doi:10.1016/j.rser.2016.12.106 es_ES
dc.description.references Marzal, S., Salas, R., González-Medina, R., Garcerá, G., & Figueres, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews, 82, 3610-3622. doi:10.1016/j.rser.2017.10.101 es_ES
dc.description.references Singh, A., & Suhag, S. (2018). Trends in Islanded Microgrid Frequency Regulation – A Review. Smart Science, 7(2), 91-115. doi:10.1080/23080477.2018.1540380 es_ES
dc.description.references Hou, X., Sun, Y., Lu, J., Zhang, X., Koh, L. H., Su, M., & Guerrero, J. M. (2018). Distributed Hierarchical Control of AC Microgrid Operating in Grid-Connected, Islanded and Their Transition Modes. IEEE Access, 6, 77388-77401. doi:10.1109/access.2018.2882678 es_ES
dc.description.references SHI, R., ZHANG, X., HU, C., XU, H., GU, J., & CAO, W. (2017). Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids. Journal of Modern Power Systems and Clean Energy, 6(3), 482-494. doi:10.1007/s40565-017-0347-3 es_ES
dc.description.references Toub, M., Bijaieh, M. M., Weaver, W. W., III, R. D. R., Maaroufi, M., & Aniba, G. (2019). Droop Control in DQ Coordinates for Fixed Frequency Inverter-Based AC Microgrids. Electronics, 8(10), 1168. doi:10.3390/electronics8101168 es_ES
dc.description.references Shuai, Z., Fang, J., Ning, F., & Shen, Z. J. (2018). Hierarchical structure and bus voltage control of DC microgrid. Renewable and Sustainable Energy Reviews, 82, 3670-3682. doi:10.1016/j.rser.2017.10.096 es_ES
dc.description.references Agundis-Tinajero, G., Segundo-Ramírez, J., Visairo-Cruz, N., Savaghebi, M., Guerrero, J. M., & Barocio, E. (2019). Power flow modeling of islanded AC microgrids with hierarchical control. International Journal of Electrical Power & Energy Systems, 105, 28-36. doi:10.1016/j.ijepes.2018.08.002 es_ES
dc.description.references Ali, A., Li, W., Hussain, R., He, X., Williams, B., & Memon, A. (2017). Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China. Sustainability, 9(7), 1146. doi:10.3390/su9071146 es_ES
dc.description.references Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681-704. doi:10.1016/j.energy.2017.02.174 es_ES
dc.description.references Yazdi, F., & Hosseinian, S. H. (2019). A novel «Smart Branch» for power quality improvement in microgrids. International Journal of Electrical Power & Energy Systems, 110, 161-170. doi:10.1016/j.ijepes.2019.02.026 es_ES
dc.description.references Bassey, O., Butler-Purry, K. L., & Chen, B. (2020). Dynamic Modeling of Sequential Service Restoration in Islanded Single Master Microgrids. IEEE Transactions on Power Systems, 35(1), 202-214. doi:10.1109/tpwrs.2019.2929268 es_ES
dc.description.references Chang, E.-C. (2018). Study and Application of Intelligent Sliding Mode Control for Voltage Source Inverters. Energies, 11(10), 2544. doi:10.3390/en11102544 es_ES
dc.description.references Das, D., Gurrala, G., & Shenoy, U. J. (2018). Linear Quadratic Regulator-Based Bumpless Transfer in Microgrids. IEEE Transactions on Smart Grid, 9(1), 416-425. doi:10.1109/tsg.2016.2580159 es_ES
dc.description.references Nguyen, H. K., Khodaei, A., & Han, Z. (2018). Incentive Mechanism Design for Integrated Microgrids in Peak Ramp Minimization Problem. IEEE Transactions on Smart Grid, 9(6), 5774-5785. doi:10.1109/tsg.2017.2696903 es_ES
dc.description.references Xiao, Z., Guerrero, J. M., Shuang, J., Sera, D., Schaltz, E., & Vásquez, J. C. (2018). Flat tie-line power scheduling control of grid-connected hybrid microgrids. Applied Energy, 210, 786-799. doi:10.1016/j.apenergy.2017.07.066 es_ES
dc.description.references Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). A Decentralized Robust Mixed $H_{{2}}/ H_{{{\infty }}}$ Voltage Control Scheme to Improve Small/Large-Signal Stability and FRT Capability of Islanded Multi-DER Microgrid Considering Load Disturbances. IEEE Systems Journal, 12(3), 2610-2621. doi:10.1109/jsyst.2017.2716351 es_ES
dc.description.references Panda, S. K., & Ghosh, A. (2020). A Computational Analysis of Interfacing Converters with Advanced Control Methodologies for Microgrid Application. Technology and Economics of Smart Grids and Sustainable Energy, 5(1). doi:10.1007/s40866-020-0077-x es_ES
dc.description.references Zhang, L., Chen, K., Lyu, L., & Cai, G. (2019). Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm. Energies, 12(6), 1162. doi:10.3390/en12061162 es_ES
dc.description.references Zhu, K., Sun, P., Zhou, L., Du, X., & Luo, Q. (2020). Frequency-Division Virtual Impedance Shaping Control Method for Grid-Connected Inverters in a Weak and Distorted Grid. IEEE Transactions on Power Electronics, 35(8), 8116-8129. doi:10.1109/tpel.2019.2963345 es_ES
dc.description.references Samavati, E., & Mohammadi, H. R. (2019). Simultaneous voltage and current harmonics compensation in islanded/grid-connected microgrids using virtual impedance concept. Sustainable Energy, Grids and Networks, 20, 100258. doi:10.1016/j.segan.2019.100258 es_ES
dc.description.references Shi, K., Ye, H., Song, W., & Zhou, G. (2018). Virtual Inertia Control Strategy in Microgrid Based on Virtual Synchronous Generator Technology. IEEE Access, 6, 27949-27957. doi:10.1109/access.2018.2839737 es_ES
dc.description.references Fathi, A., Shafiee, Q., & Bevrani, H. (2018). Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator. IEEE Transactions on Power Systems, 33(6), 6289-6297. doi:10.1109/tpwrs.2018.2850880 es_ES
dc.description.references Amoateng, D. O., Al Hosani, M., Elmoursi, M. S., Turitsyn, K., & Kirtley, J. L. (2018). Adaptive Voltage and Frequency Control of Islanded Multi-Microgrids. IEEE Transactions on Power Systems, 33(4), 4454-4465. doi:10.1109/tpwrs.2017.2780986 es_ES
dc.description.references Sopinka, A., & Pitt, L. (2013). British Columbia Electricity Supply Gap Strategy: A Redefinition of Self-Sufficiency. The Electricity Journal, 26(3), 81-88. doi:10.1016/j.tej.2013.03.003 es_ES
dc.description.references Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). Decentralized Sliding Mode Control of WG/PV/FC Microgrids Under Unbalanced and Nonlinear Load Conditions for On- and Off-Grid Modes. IEEE Systems Journal, 12(4), 3108-3119. doi:10.1109/jsyst.2017.2761792 es_ES
dc.description.references Gholami, S., Saha, S., & Aldeen, M. (2018). Robust multiobjective control method for power sharing among distributed energy resources in islanded microgrids with unbalanced and nonlinear loads. International Journal of Electrical Power & Energy Systems, 94, 321-338. doi:10.1016/j.ijepes.2017.07.012 es_ES
dc.description.references Mousazadeh Mousavi, S. Y., Jalilian, A., Savaghebi, M., & Guerrero, J. M. (2018). Autonomous Control of Current- and Voltage-Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids. IEEE Transactions on Power Electronics, 33(11), 9375-9386. doi:10.1109/tpel.2018.2792780 es_ES
dc.description.references Fani, B., Zandi, F., & Karami-Horestani, A. (2018). An enhanced decentralized reactive power sharing strategy for inverter-based microgrid. International Journal of Electrical Power & Energy Systems, 98, 531-542. doi:10.1016/j.ijepes.2017.12.023 es_ES
dc.description.references Khayat, Y., Naderi, M., Shafiee, Q., Batmani, Y., Fathi, M., Guerrero, J. M., & Bevrani, H. (2019). Decentralized Optimal Frequency Control in Autonomous Microgrids. IEEE Transactions on Power Systems, 34(3), 2345-2353. doi:10.1109/tpwrs.2018.2889671 es_ES
dc.description.references Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245 es_ES
dc.description.references Alyazidi, N. M., Mahmoud, M. S., & Abouheaf, M. I. (2018). Adaptive critics based cooperative control scheme for islanded Microgrids. Neurocomputing, 272, 532-541. doi:10.1016/j.neucom.2017.07.027 es_ES
dc.description.references Buduma, P., & Panda, G. (2018). Robust nested loop control scheme for LCL‐filtered inverter‐based DG unit in grid‐connected and islanded modes. IET Renewable Power Generation, 12(11), 1269-1285. doi:10.1049/iet-rpg.2017.0803 es_ES
dc.description.references Batiyah, S., Sharma, R., Abdelwahed, S., & Zohrabi, N. (2020). An MPC-based power management of standalone DC microgrid with energy storage. International Journal of Electrical Power & Energy Systems, 120, 105949. doi:10.1016/j.ijepes.2020.105949 es_ES
dc.description.references Baghaee, H. R., Mirsalim, M., Gharehpetan, G. B., & Talebi, H. A. (2018). Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations Using Radial Basis Function Neural Networks. IEEE Systems Journal, 12(3), 2749-2759. doi:10.1109/jsyst.2016.2645165 es_ES
dc.description.references Benhalima, S., Miloud, R., & Chandra, A. (2018). Real-Time Implementation of Robust Control Strategies Based on Sliding Mode Control for Standalone Microgrids Supplying Non-Linear Loads. Energies, 11(10), 2590. doi:10.3390/en11102590 es_ES
dc.description.references California Carbon Market Watch: A Comprehensive Analysis of the Golden State’s Cap-and-Trade Program, Year One—2012–2013. 2014https://www.issuelab.org/resource/california-carbon-market-watch-a-comprehensive-analysis-of-the-golden-state-s-cap-and-trade-program-year-one-2012-2013.html es_ES
dc.description.references Exploring the Best Possible Trade-Off between Competing Objectives: Identifying the Pareto Fronthttps://pythonhealthcare.org/2018/09/27/93-exploring-the-best-possible-trade-off-between-competing-objectives-identifying-the-p es_ES
dc.description.references Teekaraman, Y., Kuppusamy, R., & Nikolovski, S. (2019). Solution for Voltage and Frequency Regulation in Standalone Microgrid using Hybrid Multiobjective Symbiotic Organism Search Algorithm. Energies, 12(14), 2812. doi:10.3390/en12142812 es_ES
dc.description.references Zeng, Z., Li, H., Tang, S., Yang, H., & Zhao, R. (2016). Multi‐objective control of multi‐functional grid‐connected inverter for renewable energy integration and power quality service. IET Power Electronics, 9(4), 761-770. doi:10.1049/iet-pel.2015.0317 es_ES
dc.description.references Wu, Y., Guerrero, J. M., Vasquez, J. C., & Wu, Y. (2019). Bumpless Optimal Control over Multi-Objective Microgrids with Mode-Dependent Controllers. Energies, 12(19), 3619. doi:10.3390/en12193619 es_ES
dc.description.references Sedighizadeh, M., Esmaili, M., & Eisapour-Moarref, A. (2017). Voltage and frequency regulation in autonomous microgrids using Hybrid Big Bang-Big Crunch algorithm. Applied Soft Computing, 52, 176-189. doi:10.1016/j.asoc.2016.12.031 es_ES
dc.description.references Miao, L., Zhang, Y., Xiao, X., Guo, Q., Zhang, J., Yildirim, T., & Liu, H. (2020). Multiobjective Coordinated Control Strategy for Grid-Connected Inverter under Unbalanced Voltage Conditions. Journal of Energy Engineering, 146(3), 04020005. doi:10.1061/(asce)ey.1943-7897.0000651 es_ES
dc.description.references Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2016). Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy, 115, 1022-1041. doi:10.1016/j.energy.2016.09.007 es_ES
dc.description.references Doyran, R. V., Sedighizadeh, M., Rezazadeh, A., & Alavi, S. M. M. (2020). Optimal allocation of passive filters and inverter based DGs joint with optimal feeder reconfiguration to improve power quality in a harmonic polluted microgrid. Renewable Energy Focus, 32, 63-78. doi:10.1016/j.ref.2019.12.001 es_ES
dc.description.references Agnoletto, E. J., Silva de Castro, D., Neves, R. V. A., Quadros Machado, R., & Oliveira, V. A. (2019). An Optimal Energy Management Technique Using the $\epsilon$ -Constraint Method for Grid-Tied and Stand-Alone Battery-Based Microgrids. IEEE Access, 7, 165928-165942. doi:10.1109/access.2019.2954050 es_ES
dc.description.references Hamidi, A., Nazarpour, D., & Golshannavaz, S. (2018). Multiobjective Scheduling of Microgrids to Harvest Higher Photovoltaic Energy. IEEE Transactions on Industrial Informatics, 14(1), 47-57. doi:10.1109/tii.2017.2717906 es_ES
dc.description.references Garroussi, Z., Ellaia, R., El-ghazali-Talbi, & Lucas, J. (2020). A matheuristic for a bi-objective demand-side optimization for cooperative smart homes. Electrical Engineering, 102(4), 1913-1930. doi:10.1007/s00202-020-00997-6 es_ES
dc.description.references Manas, M. (2018). Optimization of Distributed Generation Based Hybrid Renewable Energy System for a DC Micro-Grid Using Particle Swarm Optimization. Distributed Generation & Alternative Energy Journal, 33(4), 7-25. doi:10.1080/21563306.2018.12029912 es_ES
dc.description.references Ye, B., Shi, X., Wang, X., & Wu, H. (2019). Optimisation configuration of hybrid AC/DC microgrid containing electric vehicles based on the NSGA‐II algorithm. The Journal of Engineering, 2019(10), 7229-7236. doi:10.1049/joe.2018.5043 es_ES
dc.description.references Raju P, E. S. N., & Jain, T. (2017). Robust optimal centralized controller to mitigate the small signal instability in an islanded inverter based microgrid with active and passive loads. International Journal of Electrical Power & Energy Systems, 90, 225-236. doi:10.1016/j.ijepes.2017.02.011 es_ES
dc.description.references Zhao, F., Yuan, J., & Wang, N. (2019). Dynamic Economic Dispatch Model of Microgrid Containing Energy Storage Components Based on a Variant of NSGA-II Algorithm. Energies, 12(5), 871. doi:10.3390/en12050871 es_ES
dc.description.references Dissanayake, A. M., & Ekneligoda, N. C. (2020). Multiobjective Optimization of Droop-Controlled Distributed Generators in DC Microgrids. IEEE Transactions on Industrial Informatics, 16(4), 2423-2435. doi:10.1109/tii.2019.2931837 es_ES
dc.description.references Brandao, D. I., Ferreira, W. M., Alonso, A. M. S., Tedeschi, E., & Marafao, F. P. (2020). Optimal Multiobjective Control of Low-Voltage AC Microgrids: Power Flow Regulation and Compensation of Reactive Power and Unbalance. IEEE Transactions on Smart Grid, 11(2), 1239-1252. doi:10.1109/tsg.2019.2933790 es_ES
dc.description.references Ferreira, W. M., Meneghini, I. R., Brandao, D. I., & Guimarães, F. G. (2020). Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids. Applied Energy, 274, 115326. doi:10.1016/j.apenergy.2020.115326 es_ES
dc.description.references Dehkordi, N. M., Sadati, N., & Hamzeh, M. (2018). Robust tuning of transient droop gains based on Kharitonov’s stability theorem in droop‐controlled microgrids. IET Generation, Transmission & Distribution, 12(14), 3495-3501. doi:10.1049/iet-gtd.2017.1767 es_ES
dc.description.references Choudhury, S., Bhowmik, P., & Rout, P. K. (2018). Seeker optimization approach to dynamic PI based virtual impedance drooping for economic load sharing between PV and SOFC in an islanded microgrid. Sustainable Cities and Society, 37, 550-562. doi:10.1016/j.scs.2017.11.013 es_ES
dc.description.references Praiselin, W. J., & Edward, J. B. (2017). Voltage Profile Improvement of Solar PV Grid – Connected Inverter with Micro Grid Operation using PI Controller. Energy Procedia, 117, 104-111. doi:10.1016/j.egypro.2017.05.112 es_ES
dc.description.references Rajesh, K. S., Dash, S. S., & Rajagopal, R. (2019). Hybrid improved firefly-pattern search optimized fuzzy aided PID controller for automatic generation control of power systems with multi-type generations. Swarm and Evolutionary Computation, 44, 200-211. doi:10.1016/j.swevo.2018.03.005 es_ES
dc.description.references Dragicevic, T. (2018). Dynamic Stabilization of DC Microgrids With Predictive Control of Point-of-Load Converters. IEEE Transactions on Power Electronics, 33(12), 10872-10884. doi:10.1109/tpel.2018.2801886 es_ES
dc.description.references John, T., & Ping Lam, S. (2017). Voltage and frequency control during microgrid islanding in a multi‐area multi‐microgrid system. IET Generation, Transmission & Distribution, 11(6), 1502-1512. doi:10.1049/iet-gtd.2016.1113 es_ES
dc.description.references Shan, Y., Hu, J., Li, Z., & Guerrero, J. M. (2018). A Model Predictive Control for Renewable Energy Based AC Microgrids Without Any PID Regulators. IEEE Transactions on Power Electronics, 33(11), 9122-9126. doi:10.1109/tpel.2018.2822314 es_ES
dc.description.references Babqi, A. J., & Etemadi, A. H. (2017). MPC‐based microgrid control with supplementary fault current limitation and smooth transition mechanisms. IET Generation, Transmission & Distribution, 11(9), 2164-2172. doi:10.1049/iet-gtd.2016.1387 es_ES
dc.description.references Ramya, K., & Rameshkumar, K. A. (2018). Fuzzy and De-Coupled d-q Control Strategy in Riven Bias Inverter for Islanding Operation in Microgrid. Journal of Computational and Theoretical Nanoscience, 15(6), 2121-2125. doi:10.1166/jctn.2018.7419 es_ES
dc.description.references Sedaghati, R., & Shakarami, M. R. (2019). A novel control strategy and power management of hybrid PV/FC/SC/battery renewable power system-based grid-connected microgrid. Sustainable Cities and Society, 44, 830-843. doi:10.1016/j.scs.2018.11.014 es_ES
dc.description.references Wang, Z., Huang, Z., Song, C., & Zhang, H. (2018). Multiscale Adaptive Fault Diagnosis Based on Signal Symmetry Reconstitution Preprocessing for Microgrid Inverter Under Changing Load Condition. IEEE Transactions on Smart Grid, 9(2), 797-806. doi:10.1109/tsg.2016.2565667 es_ES
dc.description.references Mahmud, K., Sahoo, A. K., Ravishankar, J., & Dong, Z. Y. (2019). Coordinated Multilayer Control for Energy Management of Grid-Connected AC Microgrids. IEEE Transactions on Industry Applications, 55(6), 7071-7081. doi:10.1109/tia.2019.2931490 es_ES
dc.description.references Tabart, Q., Vechiu, I., Etxeberria, A., & Bacha, S. (2018). Hybrid Energy Storage System Microgrids Integration for Power Quality Improvement Using Four-Leg Three-Level NPC Inverter and Second-Order Sliding Mode Control. IEEE Transactions on Industrial Electronics, 65(1), 424-435. doi:10.1109/tie.2017.2723863 es_ES
dc.description.references Yan, H., Zhou, X., Zhang, H., Yang, F., & Wu, Z.-G. (2019). A Novel Sliding Mode Estimation for Microgrid Control With Communication Time Delays. IEEE Transactions on Smart Grid, 10(2), 1509-1520. doi:10.1109/tsg.2017.2771493 es_ES
dc.description.references Delghavi, M. B., & Yazdani, A. (2019). Sliding-Mode Control of AC Voltages and Currents of Dispatchable Distributed Energy Resources in Master-Slave-Organized Inverter-Based Microgrids. IEEE Transactions on Smart Grid, 10(1), 980-991. doi:10.1109/tsg.2017.2756935 es_ES
dc.description.references Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2021). OC/OL Protection of Droop-Controlled and Directly Voltage-Controlled Microgrids Using TMF/ANN-Based Fault Detection and Discrimination. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(3), 3254-3265. doi:10.1109/jestpe.2019.2958925 es_ES
dc.description.references Yang, Q., Le Blond, S., Aggarwal, R., Wang, Y., & Li, J. (2017). New ANN method for multi-terminal HVDC protection relaying. Electric Power Systems Research, 148, 192-201. doi:10.1016/j.epsr.2017.03.024 es_ES
dc.description.references Bonala, A. K., & Sandepudi, S. R. (2019). Centralised model‐predictive decoupled active–reactive power control for three‐level neutral point clamped photovoltaic inverter with preference selective index‐based objective prioritisation. IET Power Electronics, 12(4), 840-851. doi:10.1049/iet-pel.2018.5825 es_ES
dc.description.references Tran, T., Yoon, S.-J., & Kim, K.-H. (2018). An LQR-Based Controller Design for an LCL-Filtered Grid-Connected Inverter in Discrete-Time State-Space under Distorted Grid Environment. Energies, 11(8), 2062. doi:10.3390/en11082062 es_ES
dc.description.references Anbarasu, E., Pandian S, M. V., & Basha, A. R. (2020). An improved power conditioning system for grid integration of solar power using ANFIS based FOPID controller. Microprocessors and Microsystems, 74, 103030. doi:10.1016/j.micpro.2020.103030 es_ES
dc.description.references Kirankumar, B., Siva Reddy, Y. V., & Vijayakumar, M. (2017). Multilevel inverter with space vector modulation: intelligence direct torque control of induction motor. IET Power Electronics, 10(10), 1129-1137. doi:10.1049/iet-pel.2016.0287 es_ES
dc.description.references Vinayagam, A., Alqumsan, A. A., Swarna, K. S. V., Khoo, S. Y., & Stojcevski, A. (2018). Intelligent control strategy in the islanded network of a solar PV microgrid. Electric Power Systems Research, 155, 93-103. doi:10.1016/j.epsr.2017.10.006 es_ES
dc.description.references Han, Y., Zhang, K., Li, H., Coelho, E. A. A., & Guerrero, J. M. (2018). MAS-Based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters: A Comprehensive Overview. IEEE Transactions on Power Electronics, 33(8), 6488-6508. doi:10.1109/tpel.2017.2761438 es_ES
dc.description.references Antonio de Souza Ribeiro, L., Freijedo, F. D., de Bosio, F., Soares Lima, M., Guerrero, J. M., & Pastorelli, M. (2018). Full Discrete Modeling, Controller Design, and Sensitivity Analysis for High-Performance Grid-Forming Converters in Islanded Microgrids. IEEE Transactions on Industry Applications, 54(6), 6267-6278. doi:10.1109/tia.2018.2847635 es_ES
dc.description.references De Bosio, F., de S. Ribeiro, L. A., Freijedo, F. D., Pastorelli, M., & Guerrero, J. M. (2017). Discrete-Time Domain Modeling of Voltage Source Inverters in Standalone Applications: Enhancement of Regulators Performance by Means of Smith Predictor. IEEE Transactions on Power Electronics, 32(10), 8100-8114. doi:10.1109/tpel.2016.2632527 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem