- -

A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant

Show full item record

García-Fortea, E.; García-Pérez, A.; Gimeno -Páez, E.; Sánchez-Gimeno, A.; Vilanova Navarro, S.; Prohens Tomás, J.; Pastor-Calle, D. (2020). A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant. Biology. 9(9):1-19. https://doi.org/10.3390/biology9090272

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167458

Files in this item

Item Metadata

Title: A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant
Author: García-Fortea, Edgar García-Pérez, Ana Gimeno -Páez, Esther Sánchez-Gimeno, Alfredo Vilanova Navarro, Santiago Prohens Tomás, Jaime Pastor-Calle, David
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] The development of double haploids (DHs) is a straightforward path for obtaining pure lines but has multiple bottlenecks. Among them is the determination of the optimal stage of pollen induction for androgenesis. In ...[+]
Subjects: Androgenesis , Anther culture , Microspores , RetinaNet , Solanum melongena
Copyrigths: Reconocimiento (by)
Source:
Biology. (eissn: 2079-7737 )
DOI: 10.3390/biology9090272
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/biology9090272
Project ID:
AEI/RTI-2018-094592-B-100
MECD/FPU17/02389
Thanks:
This research was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-I00 from MCIU/AEI/FEDER, UE). ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record