- -

A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant

Show full item record

García-Fortea, E.; García-Pérez, A.; Gimeno -Páez, E.; Sánchez-Gimeno, A.; Vilanova Navarro, S.; Prohens Tomás, J.; Pastor-Calle, D. (2020). A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant. Biology. 9(9):1-19. https://doi.org/10.3390/biology9090272

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167458

Files in this item

Item Metadata

Title: A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant
Author: García-Fortea, Edgar García-Pérez, Ana Gimeno -Páez, Esther Sánchez-Gimeno, Alfredo Vilanova Navarro, Santiago Prohens Tomás, Jaime Pastor-Calle, David
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] The development of double haploids (DHs) is a straightforward path for obtaining pure lines but has multiple bottlenecks. Among them is the determination of the optimal stage of pollen induction for androgenesis. In ...[+]
Subjects: Androgenesis , Anther culture , Microspores , RetinaNet , Solanum melongena
Copyrigths: Reconocimiento (by)
Source:
Biology. (eissn: 2079-7737 )
DOI: 10.3390/biology9090272
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/biology9090272
Project ID:
AEI/RTI-2018-094592-B-100
MECD/FPU17/02389
Thanks:
This research was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-I00 from MCIU/AEI/FEDER, UE). ...[+]
Type: Artículo

References

Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9

Acquaah, G. (2012). Principles of Plant Genetics and Breeding. doi:10.1002/9781118313718

Salim, M., Gökçe, A., Naqqash, M. N., & Bakhsh, A. (2020). Gene Pyramiding: An Emerging Control Strategy Against Insect Pests of Agronomic Crops. Agronomic Crops, 285-312. doi:10.1007/978-981-15-0025-1_16 [+]
Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9

Acquaah, G. (2012). Principles of Plant Genetics and Breeding. doi:10.1002/9781118313718

Salim, M., Gökçe, A., Naqqash, M. N., & Bakhsh, A. (2020). Gene Pyramiding: An Emerging Control Strategy Against Insect Pests of Agronomic Crops. Agronomic Crops, 285-312. doi:10.1007/978-981-15-0025-1_16

Jonas, E., & de Koning, D.-J. (2013). Does genomic selection have a future in plant breeding? Trends in Biotechnology, 31(9), 497-504. doi:10.1016/j.tibtech.2013.06.003

Ahmadi, B., & Ebrahimzadeh, H. (2020). In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. Plant Cell Reports, 39(3), 299-316. doi:10.1007/s00299-020-02509-z

Kumar, K. R., Singh, K. P., Bhatia, R., Raju, D. V. S., & Panwar, S. (2019). Optimising protocol for successful development of haploids in marigold (Tagetes spp.) through in vitro androgenesis. Plant Cell, Tissue and Organ Culture (PCTOC), 138(1), 11-28. doi:10.1007/s11240-019-01598-3

Lantos, C., Bóna, L., Nagy, É., Békés, F., & Pauk, J. (2018). Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 133(3), 385-393. doi:10.1007/s11240-018-1391-z

Warchoł, M., Czyczyło-Mysza, I., Marcińska, I., Dziurka, K., Noga, A., Kapłoniak, K., … Skrzypek, E. (2019). Factors inducing regeneration response in oat (Avena sativa L.) anther culture. In Vitro Cellular & Developmental Biology - Plant, 55(5), 595-604. doi:10.1007/s11627-019-09987-1

González, J. M., & Jouve, N. (2005). Microspore development during in vitro androgenesis in triticale. Biologia plantarum, 49(1), 23-28. doi:10.1007/s10535-005-3028-4

Segui-Simarro, J. M., & Nuez, F. (2007). Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. Journal of Experimental Botany, 58(5), 1119-1132. doi:10.1093/jxb/erl271

Seguí-Simarro, J. M., Corral-Martínez, P., Parra-Vega, V., & González-García, B. (2010). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports, 30(5), 765-778. doi:10.1007/s00299-010-0984-8

Rotino, G. L. (1996). Haploidy in eggplant. Current Plant Science and Biotechnology in Agriculture, 115-141. doi:10.1007/978-94-017-1858-5_8

Miyoshi, K. (1996). Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L.). Plant Cell Reports, 15(6), 391-395. doi:10.1007/bf00232061

Germanà, M. A. (2010). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture (PCTOC), 104(3), 283-300. doi:10.1007/s11240-010-9852-z

Salas, P., Rivas-Sendra, A., Prohens, J., & Seguí-Simarro, J. M. (2011). Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica, 184(2), 235-250. doi:10.1007/s10681-011-0569-9

Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2). doi:10.1007/s10681-011-0490-2

Brinkmann, M., Lütkemeyer, D., Gudermann, F., & Lehmann, J. (2002). Cytotechnology, 38(1/3), 119-127. doi:10.1023/a:1021118501866

Väyrynen, J. P., Vornanen, J. O., Sajanti, S., Böhm, J. P., Tuomisto, A., & Mäkinen, M. J. (2012). An improved image analysis method for cell counting lends credibility to the prognostic significance of T cells in colorectal cancer. Virchows Archiv, 460(5), 455-465. doi:10.1007/s00428-012-1232-0

Kakui, H., Yamazaki, M., Hamaya, N.-B., & Shimizu, K. K. (2020). Pollen Grain Counting Using a Cell Counter. Methods in Molecular Biology, 1-11. doi:10.1007/978-1-0716-0672-8_1

Bologna-Molina, R., Damián-Matsumura, P., & Molina-Frechero, N. (2011). An easy cell counting method for immunohistochemistry that does not use an image analysis program. Histopathology, 59(4), 801-803. doi:10.1111/j.1365-2559.2011.03954.x

Choudhry, P. (2016). High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection. PLOS ONE, 11(2), e0148469. doi:10.1371/journal.pone.0148469

Du, Li, X., & Li, Q. (2019). Detection and Classification of Cervical Exfoliated Cells Based on Faster R-CNN*. 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT). doi:10.1109/icait.2019.8935931

Chowdhury, A. B., Roberson, J., Hukkoo, A., Bodapati, S., & Cappelleri, D. J. (2020). Automated Complete Blood Cell Count and Malaria Pathogen Detection Using Convolution Neural Network. IEEE Robotics and Automation Letters, 5(2), 1047-1054. doi:10.1109/lra.2020.2967290

Elgendi, M., Fletcher, R., Howard, N., Menon, C., & Ward, R. (2020). The Evaluation of Deep Neural Networks and X-Ray as a Practical Alternative for Diagnosis and Management of COVID-19. doi:10.1101/2020.05.12.20099481

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal Loss for Dense Object Detection. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.324

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48. doi:10.1016/j.neucom.2015.09.116

Barchi, L., Acquadro, A., Alonso, D., Aprea, G., Bassolino, L., Demurtas, O., … Giuliano, G. (2019). Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01005

Wu, D. D., Ruban, A., Rutten, T., Zhou, Y. H., & Houben, A. (2019). Analysis of Pollen Grains by Immunostaining and FISH in Triticeae Species. Plant Meiosis, 347-358. doi:10.1007/978-1-4939-9818-0_24

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Texts in Statistics. doi:10.1007/978-1-4614-7138-7

García-Fortea, E., Lluch-Ruiz, A., Pineda-Chaza, B. J., García-Pérez, A., Bracho-Gil, J. P., Plazas, M., … Prohens, J. (2020). A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant Biology, 20(1). doi:10.1186/s12870-019-2215-y

DUMAS DE VAULX, R., CHAMBONNET, D., & POCHARD, E. (1981). Culture in vitro d’anthères de piment (Capsicum annuum L.) : amélioration des taux d’obtention de plantes chez différents génotypes par des traitements à + 35 °C. Agronomie, 1(10), 859-864. doi:10.1051/agro:19811006

Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241

Doyle, J. (1991). DNA Protocols for Plants. Molecular Techniques in Taxonomy, 283-293. doi:10.1007/978-3-642-83962-7_18

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308

Akbar, S., Martel, A. L., Peikari, M., Salama, S., & Nofech-Mozes, S. (2018). Determining tumor cellularity in digital slides using ResNet. Medical Imaging 2018: Digital Pathology. doi:10.1117/12.2292813

Yan, J., Tucci, E., & Jaffe, N. (2019). Detection of t(9;22) Chromosome Translocation Using Deep Residual Neural Network. Journal of Computer and Communications, 07(12), 102-111. doi:10.4236/jcc.2019.712010

Malik, M. R., Wang, F., Dirpaul, J. M., Zhou, N., Polowick, P. L., Ferrie, A. M. R., & Krochko, J. E. (2007). Transcript Profiling and Identification of Molecular Markers for Early Microspore Embryogenesis inBrassica napus . Plant Physiology, 144(1), 134-154. doi:10.1104/pp.106.092932

Heberle-Bors, E. (1989). Isolated pollen culture in tobacco: plant reproductive development in a nutshell. Sexual Plant Reproduction, 2(1). doi:10.1007/bf00190112

Raghavan, V. (1990). From Microspore to Embryoid: Faces of the Angiosperm Pollen Grain. Current Plant Science and Biotechnology in Agriculture, 213-221. doi:10.1007/978-94-009-2103-0_32

Makowska, K., & Oleszczuk, S. (2013). Albinism in barley androgenesis. Plant Cell Reports, 33(3), 385-392. doi:10.1007/s00299-013-1543-x

Immonen, S., & Anttila, H. (2000). Media Composition and Anther Plating for Production of Androgenetic Green Plants from Cultivated Rye (Secale cereale L.). Journal of Plant Physiology, 156(2), 204-210. doi:10.1016/s0176-1617(00)80307-7

Kiviharju, E., Puolimatka, M., Saastamoinen, M., & Pehu, E. (2000). Extension of anther culture to several genotypes of cultivated oats. Plant Cell Reports, 19(7), 674-679. doi:10.1007/s002999900165

Liu, W., Zheng, M., & Konzak, C. (2002). Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Reports, 20(9), 821-824. doi:10.1007/s00299-001-0408-x

Caredda, S., Devaux, P., Sangwan, R. S., Proult, I., & Clément, C. (2004). Plant Cell, Tissue and Organ Culture, 76(1), 35-43. doi:10.1023/a:1025812621775

Kumari, M., Clarke, H. J., Small, I., & Siddique, K. H. M. (2009). Albinism in Plants: A Major Bottleneck in Wide Hybridization, Androgenesis and Doubled Haploid Culture. Critical Reviews in Plant Sciences, 28(6), 393-409. doi:10.1080/07352680903133252

Höfer, M., Grafe, C., Boudichevskaja, A., Lopez, A., Bueno, M. A., & Roen, D. (2008). Characterization of plant material obtained by in vitro androgenesis and in situ parthenogenesis in apple. Scientia Horticulturae, 117(3), 203-211. doi:10.1016/j.scienta.2008.02.020

Sharma, S., Chaudhary, H., & Sethi, G. (2010). In vitro and in vivo screening for drought tolerance in winter × spring wheat doubled haploids derived through chromosome elimination. Acta Agronomica Hungarica, 58(3), 301-312. doi:10.1556/aagr.58.2010.3.14

Takahira, J., Cousin, A., Nelson, M. N., & Cowling, W. A. (2010). Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell, Tissue and Organ Culture (PCTOC), 104(1), 51-59. doi:10.1007/s11240-010-9803-8

Garcia-Arias, F., Sánchez-Betancourt, E., & Núñez, V. (2018). Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agronomía Colombiana, 36(3), 201-209. doi:10.15446/agron.colomb.v36n3.73108

Sheng, X., Zhao, Z., Yu, H., Wang, J., Xiaohui, Z., & Gu, H. (2011). Protoplast isolation and plant regeneration of different doubled haploid lines of cauliflower (Brassica oleracea var. botrytis). Plant Cell, Tissue and Organ Culture (PCTOC), 107(3), 513-520. doi:10.1007/s11240-011-0002-z

Keleş, D., Özcan, C., Pınar, H., Ata, A., Denli, N., Yücel, N. K., … Büyükalaca, S. (2016). First Report of Obtaining Haploid Plants Using Tissue Culture Techniques in Spinach. HortScience, 51(6), 742-749. doi:10.21273/hortsci.51.6.742

Olszewska, D., Niklas-Nowak, A., & Nowaczyk, L. (2017). Estimation of genetic divergence within androgenic regenerants of Capsicum annuum L. ATZ1 × C. frutescens L. F 1 plants using random amplified polymorphic DNA markers. BioTechnologia, 98(3), 175-182. doi:10.5114/bta.2017.70795

Budak, H., Shearman, R. C., Parmaksiz, I., & Dweikat, I. (2004). Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theoretical and Applied Genetics, 109(2), 280-288. doi:10.1007/s00122-004-1630-z

Szarejko, I., & Forster, B. P. (2006). Doubled haploidy and induced mutation. Euphytica, 158(3), 359-370. doi:10.1007/s10681-006-9241-1

Ferrie, A. M. R., Taylor, D. C., MacKenzie, S. L., Rakow, G., Raney, J. P., & Keller, W. A. (2008). Microspore mutagenesis ofBrassicaspecies for fatty acid modifications: a preliminary evaluation. Plant Breeding, 127(5), 501-506. doi:10.1111/j.1439-0523.2008.01502.x

Birchler, J. A. (2015). Heterosis: The genetic basis of hybrid vigour. Nature Plants, 1(3). doi:10.1038/nplants.2015.20

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record