- -

A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Fortea, Edgar es_ES
dc.contributor.author García-Pérez, Ana es_ES
dc.contributor.author Gimeno -Páez, Esther es_ES
dc.contributor.author Sánchez-Gimeno, Alfredo es_ES
dc.contributor.author Vilanova Navarro, Santiago es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Pastor-Calle, David es_ES
dc.date.accessioned 2021-06-08T03:31:22Z
dc.date.available 2021-06-08T03:31:22Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167458
dc.description.abstract [EN] The development of double haploids (DHs) is a straightforward path for obtaining pure lines but has multiple bottlenecks. Among them is the determination of the optimal stage of pollen induction for androgenesis. In this work, we developed Microscan, a deep learning-based system for the detection and recognition of the stages of pollen development. In a first experiment, the algorithm was developed adapting the RetinaNet predictive model using microspores of different eggplant accessions as samples. A mean average precision of 86.30% was obtained. In a second experiment, the anther range to be cultivated in vitro was determined in three eggplant genotypes by applying the Microscan system. Subsequently, they were cultivated following two different androgenesis protocols (Cb and E6). The response was only observed in the anther size range predicted by Microscan, obtaining the best results with the E6 protocol. The plants obtained were characterized by flow cytometry and with the Single Primer Enrichment Technology high-throughput genotyping platform, obtaining a high rate of confirmed haploid and double haploid plants. Microscan has been revealed as a tool for the high-throughput efficient analysis of microspore samples, as it has been exemplified in eggplant by providing an increase in the yield of DHs production. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-I00 from MCIU/AEI/FEDER, UE). This work was also undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew, and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information, see the project website: http://www.cwrdiversity.org/.The Spanish Ministerio de Educacion, Cultura y Deporte funded a predoctoral fellowship granted to Edgar Garcia-Fortea (FPU17/02389). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Androgenesis es_ES
dc.subject Anther culture es_ES
dc.subject Microspores es_ES
dc.subject RetinaNet es_ES
dc.subject Solanum melongena es_ES
dc.subject.classification GENETICA es_ES
dc.title A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/biology9090272 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-094592-B-100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU17%2F02389/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation García-Fortea, E.; García-Pérez, A.; Gimeno -Páez, E.; Sánchez-Gimeno, A.; Vilanova Navarro, S.; Prohens Tomás, J.; Pastor-Calle, D. (2020). A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant. Biology. 9(9):1-19. https://doi.org/10.3390/biology9090272 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/biology9090272 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2079-7737 es_ES
dc.identifier.pmid 32899465 es_ES
dc.identifier.pmcid PMC7564724 es_ES
dc.relation.pasarela S\431659 es_ES
dc.contributor.funder Government of Norway es_ES
dc.contributor.funder Crop Trust es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9 es_ES
dc.description.references Acquaah, G. (2012). Principles of Plant Genetics and Breeding. doi:10.1002/9781118313718 es_ES
dc.description.references Salim, M., Gökçe, A., Naqqash, M. N., & Bakhsh, A. (2020). Gene Pyramiding: An Emerging Control Strategy Against Insect Pests of Agronomic Crops. Agronomic Crops, 285-312. doi:10.1007/978-981-15-0025-1_16 es_ES
dc.description.references Jonas, E., & de Koning, D.-J. (2013). Does genomic selection have a future in plant breeding? Trends in Biotechnology, 31(9), 497-504. doi:10.1016/j.tibtech.2013.06.003 es_ES
dc.description.references Ahmadi, B., & Ebrahimzadeh, H. (2020). In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. Plant Cell Reports, 39(3), 299-316. doi:10.1007/s00299-020-02509-z es_ES
dc.description.references Kumar, K. R., Singh, K. P., Bhatia, R., Raju, D. V. S., & Panwar, S. (2019). Optimising protocol for successful development of haploids in marigold (Tagetes spp.) through in vitro androgenesis. Plant Cell, Tissue and Organ Culture (PCTOC), 138(1), 11-28. doi:10.1007/s11240-019-01598-3 es_ES
dc.description.references Lantos, C., Bóna, L., Nagy, É., Békés, F., & Pauk, J. (2018). Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 133(3), 385-393. doi:10.1007/s11240-018-1391-z es_ES
dc.description.references Warchoł, M., Czyczyło-Mysza, I., Marcińska, I., Dziurka, K., Noga, A., Kapłoniak, K., … Skrzypek, E. (2019). Factors inducing regeneration response in oat (Avena sativa L.) anther culture. In Vitro Cellular & Developmental Biology - Plant, 55(5), 595-604. doi:10.1007/s11627-019-09987-1 es_ES
dc.description.references González, J. M., & Jouve, N. (2005). Microspore development during in vitro androgenesis in triticale. Biologia plantarum, 49(1), 23-28. doi:10.1007/s10535-005-3028-4 es_ES
dc.description.references Segui-Simarro, J. M., & Nuez, F. (2007). Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. Journal of Experimental Botany, 58(5), 1119-1132. doi:10.1093/jxb/erl271 es_ES
dc.description.references Seguí-Simarro, J. M., Corral-Martínez, P., Parra-Vega, V., & González-García, B. (2010). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports, 30(5), 765-778. doi:10.1007/s00299-010-0984-8 es_ES
dc.description.references Rotino, G. L. (1996). Haploidy in eggplant. Current Plant Science and Biotechnology in Agriculture, 115-141. doi:10.1007/978-94-017-1858-5_8 es_ES
dc.description.references Miyoshi, K. (1996). Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L.). Plant Cell Reports, 15(6), 391-395. doi:10.1007/bf00232061 es_ES
dc.description.references Germanà, M. A. (2010). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture (PCTOC), 104(3), 283-300. doi:10.1007/s11240-010-9852-z es_ES
dc.description.references Salas, P., Rivas-Sendra, A., Prohens, J., & Seguí-Simarro, J. M. (2011). Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica, 184(2), 235-250. doi:10.1007/s10681-011-0569-9 es_ES
dc.description.references Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2). doi:10.1007/s10681-011-0490-2 es_ES
dc.description.references Brinkmann, M., Lütkemeyer, D., Gudermann, F., & Lehmann, J. (2002). Cytotechnology, 38(1/3), 119-127. doi:10.1023/a:1021118501866 es_ES
dc.description.references Väyrynen, J. P., Vornanen, J. O., Sajanti, S., Böhm, J. P., Tuomisto, A., & Mäkinen, M. J. (2012). An improved image analysis method for cell counting lends credibility to the prognostic significance of T cells in colorectal cancer. Virchows Archiv, 460(5), 455-465. doi:10.1007/s00428-012-1232-0 es_ES
dc.description.references Kakui, H., Yamazaki, M., Hamaya, N.-B., & Shimizu, K. K. (2020). Pollen Grain Counting Using a Cell Counter. Methods in Molecular Biology, 1-11. doi:10.1007/978-1-0716-0672-8_1 es_ES
dc.description.references Bologna-Molina, R., Damián-Matsumura, P., & Molina-Frechero, N. (2011). An easy cell counting method for immunohistochemistry that does not use an image analysis program. Histopathology, 59(4), 801-803. doi:10.1111/j.1365-2559.2011.03954.x es_ES
dc.description.references Choudhry, P. (2016). High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection. PLOS ONE, 11(2), e0148469. doi:10.1371/journal.pone.0148469 es_ES
dc.description.references Du, Li, X., & Li, Q. (2019). Detection and Classification of Cervical Exfoliated Cells Based on Faster R-CNN*. 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT). doi:10.1109/icait.2019.8935931 es_ES
dc.description.references Chowdhury, A. B., Roberson, J., Hukkoo, A., Bodapati, S., & Cappelleri, D. J. (2020). Automated Complete Blood Cell Count and Malaria Pathogen Detection Using Convolution Neural Network. IEEE Robotics and Automation Letters, 5(2), 1047-1054. doi:10.1109/lra.2020.2967290 es_ES
dc.description.references Elgendi, M., Fletcher, R., Howard, N., Menon, C., & Ward, R. (2020). The Evaluation of Deep Neural Networks and X-Ray as a Practical Alternative for Diagnosis and Management of COVID-19. doi:10.1101/2020.05.12.20099481 es_ES
dc.description.references Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal Loss for Dense Object Detection. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.324 es_ES
dc.description.references Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48. doi:10.1016/j.neucom.2015.09.116 es_ES
dc.description.references Barchi, L., Acquadro, A., Alonso, D., Aprea, G., Bassolino, L., Demurtas, O., … Giuliano, G. (2019). Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01005 es_ES
dc.description.references Wu, D. D., Ruban, A., Rutten, T., Zhou, Y. H., & Houben, A. (2019). Analysis of Pollen Grains by Immunostaining and FISH in Triticeae Species. Plant Meiosis, 347-358. doi:10.1007/978-1-4939-9818-0_24 es_ES
dc.description.references James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Texts in Statistics. doi:10.1007/978-1-4614-7138-7 es_ES
dc.description.references García-Fortea, E., Lluch-Ruiz, A., Pineda-Chaza, B. J., García-Pérez, A., Bracho-Gil, J. P., Plazas, M., … Prohens, J. (2020). A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant Biology, 20(1). doi:10.1186/s12870-019-2215-y es_ES
dc.description.references DUMAS DE VAULX, R., CHAMBONNET, D., & POCHARD, E. (1981). Culture in vitro d’anthères de piment (Capsicum annuum L.) : amélioration des taux d’obtention de plantes chez différents génotypes par des traitements à + 35 °C. Agronomie, 1(10), 859-864. doi:10.1051/agro:19811006 es_ES
dc.description.references Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241 es_ES
dc.description.references Doyle, J. (1991). DNA Protocols for Plants. Molecular Techniques in Taxonomy, 283-293. doi:10.1007/978-3-642-83962-7_18 es_ES
dc.description.references Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308 es_ES
dc.description.references Akbar, S., Martel, A. L., Peikari, M., Salama, S., & Nofech-Mozes, S. (2018). Determining tumor cellularity in digital slides using ResNet. Medical Imaging 2018: Digital Pathology. doi:10.1117/12.2292813 es_ES
dc.description.references Yan, J., Tucci, E., & Jaffe, N. (2019). Detection of t(9;22) Chromosome Translocation Using Deep Residual Neural Network. Journal of Computer and Communications, 07(12), 102-111. doi:10.4236/jcc.2019.712010 es_ES
dc.description.references Malik, M. R., Wang, F., Dirpaul, J. M., Zhou, N., Polowick, P. L., Ferrie, A. M. R., & Krochko, J. E. (2007). Transcript Profiling and Identification of Molecular Markers for Early Microspore Embryogenesis inBrassica napus . Plant Physiology, 144(1), 134-154. doi:10.1104/pp.106.092932 es_ES
dc.description.references Heberle-Bors, E. (1989). Isolated pollen culture in tobacco: plant reproductive development in a nutshell. Sexual Plant Reproduction, 2(1). doi:10.1007/bf00190112 es_ES
dc.description.references Raghavan, V. (1990). From Microspore to Embryoid: Faces of the Angiosperm Pollen Grain. Current Plant Science and Biotechnology in Agriculture, 213-221. doi:10.1007/978-94-009-2103-0_32 es_ES
dc.description.references Makowska, K., & Oleszczuk, S. (2013). Albinism in barley androgenesis. Plant Cell Reports, 33(3), 385-392. doi:10.1007/s00299-013-1543-x es_ES
dc.description.references Immonen, S., & Anttila, H. (2000). Media Composition and Anther Plating for Production of Androgenetic Green Plants from Cultivated Rye (Secale cereale L.). Journal of Plant Physiology, 156(2), 204-210. doi:10.1016/s0176-1617(00)80307-7 es_ES
dc.description.references Kiviharju, E., Puolimatka, M., Saastamoinen, M., & Pehu, E. (2000). Extension of anther culture to several genotypes of cultivated oats. Plant Cell Reports, 19(7), 674-679. doi:10.1007/s002999900165 es_ES
dc.description.references Liu, W., Zheng, M., & Konzak, C. (2002). Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Reports, 20(9), 821-824. doi:10.1007/s00299-001-0408-x es_ES
dc.description.references Caredda, S., Devaux, P., Sangwan, R. S., Proult, I., & Clément, C. (2004). Plant Cell, Tissue and Organ Culture, 76(1), 35-43. doi:10.1023/a:1025812621775 es_ES
dc.description.references Kumari, M., Clarke, H. J., Small, I., & Siddique, K. H. M. (2009). Albinism in Plants: A Major Bottleneck in Wide Hybridization, Androgenesis and Doubled Haploid Culture. Critical Reviews in Plant Sciences, 28(6), 393-409. doi:10.1080/07352680903133252 es_ES
dc.description.references Höfer, M., Grafe, C., Boudichevskaja, A., Lopez, A., Bueno, M. A., & Roen, D. (2008). Characterization of plant material obtained by in vitro androgenesis and in situ parthenogenesis in apple. Scientia Horticulturae, 117(3), 203-211. doi:10.1016/j.scienta.2008.02.020 es_ES
dc.description.references Sharma, S., Chaudhary, H., & Sethi, G. (2010). In vitro and in vivo screening for drought tolerance in winter × spring wheat doubled haploids derived through chromosome elimination. Acta Agronomica Hungarica, 58(3), 301-312. doi:10.1556/aagr.58.2010.3.14 es_ES
dc.description.references Takahira, J., Cousin, A., Nelson, M. N., & Cowling, W. A. (2010). Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell, Tissue and Organ Culture (PCTOC), 104(1), 51-59. doi:10.1007/s11240-010-9803-8 es_ES
dc.description.references Garcia-Arias, F., Sánchez-Betancourt, E., & Núñez, V. (2018). Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agronomía Colombiana, 36(3), 201-209. doi:10.15446/agron.colomb.v36n3.73108 es_ES
dc.description.references Sheng, X., Zhao, Z., Yu, H., Wang, J., Xiaohui, Z., & Gu, H. (2011). Protoplast isolation and plant regeneration of different doubled haploid lines of cauliflower (Brassica oleracea var. botrytis). Plant Cell, Tissue and Organ Culture (PCTOC), 107(3), 513-520. doi:10.1007/s11240-011-0002-z es_ES
dc.description.references Keleş, D., Özcan, C., Pınar, H., Ata, A., Denli, N., Yücel, N. K., … Büyükalaca, S. (2016). First Report of Obtaining Haploid Plants Using Tissue Culture Techniques in Spinach. HortScience, 51(6), 742-749. doi:10.21273/hortsci.51.6.742 es_ES
dc.description.references Olszewska, D., Niklas-Nowak, A., & Nowaczyk, L. (2017). Estimation of genetic divergence within androgenic regenerants of Capsicum annuum L. ATZ1 × C. frutescens L. F 1 plants using random amplified polymorphic DNA markers. BioTechnologia, 98(3), 175-182. doi:10.5114/bta.2017.70795 es_ES
dc.description.references Budak, H., Shearman, R. C., Parmaksiz, I., & Dweikat, I. (2004). Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theoretical and Applied Genetics, 109(2), 280-288. doi:10.1007/s00122-004-1630-z es_ES
dc.description.references Szarejko, I., & Forster, B. P. (2006). Doubled haploidy and induced mutation. Euphytica, 158(3), 359-370. doi:10.1007/s10681-006-9241-1 es_ES
dc.description.references Ferrie, A. M. R., Taylor, D. C., MacKenzie, S. L., Rakow, G., Raney, J. P., & Keller, W. A. (2008). Microspore mutagenesis ofBrassicaspecies for fatty acid modifications: a preliminary evaluation. Plant Breeding, 127(5), 501-506. doi:10.1111/j.1439-0523.2008.01502.x es_ES
dc.description.references Birchler, J. A. (2015). Heterosis: The genetic basis of hybrid vigour. Nature Plants, 1(3). doi:10.1038/nplants.2015.20 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem