Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302-12308. doi:10.1073/pnas.0912953109
Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109-118. doi:10.1038/s41586-019-1679-0
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE, 8(6), e66428. doi:10.1371/journal.pone.0066428
[+]
Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302-12308. doi:10.1073/pnas.0912953109
Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109-118. doi:10.1038/s41586-019-1679-0
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE, 8(6), e66428. doi:10.1371/journal.pone.0066428
Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience, 67(4), 386-391. doi:10.1093/biosci/bix010
Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., & Chatterjee, S. (2019). Climate change has likely already affected global food production. PLOS ONE, 14(5), e0217148. doi:10.1371/journal.pone.0217148
Doerge, R. W. (2002). Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics, 3(1), 43-52. doi:10.1038/nrg703
HOLLAND, J. (2007). Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 10(2), 156-161. doi:10.1016/j.pbi.2007.01.003
Geldermann, H. (1975). Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. Theoretical and Applied Genetics, 46(7), 319-330. doi:10.1007/bf00281673
Pradhan, P., Fischer, G., van Velthuizen, H., Reusser, D. E., & Kropp, J. P. (2015). Closing Yield Gaps: How Sustainable Can We Be? PLOS ONE, 10(6), e0129487. doi:10.1371/journal.pone.0129487
Mei, J., Shao, C., Yang, R., Feng, Y., Gao, Y., Ding, Y., … Qian, W. (2020). Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theoretical and Applied Genetics, 133(4), 1313-1319. doi:10.1007/s00122-020-03552-w
Muthu, V., Abbai, R., Nallathambi, J., Rahman, H., Ramasamy, S., Kambale, R., … Muthurajan, R. (2020). Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLOS ONE, 15(1), e0227421. doi:10.1371/journal.pone.0227421
Sehgal, D., & Dreisigacker, S. (2019). Haplotypes-based genetic analysis: benefits and challenges. Vavilov Journal of Genetics and Breeding, 23(7), 803-808. doi:10.18699/vj19.37-o
Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. doi:10.1007/s10681-005-1681-5
Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11(2), 215-221. doi:10.1016/j.pbi.2008.01.002
Huang, B. E., Verbyla, K. L., Verbyla, A. P., Raghavan, C., Singh, V. K., Gaur, P., … Cavanagh, C. R. (2015). MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics, 128(6), 999-1017. doi:10.1007/s00122-015-2506-0
Jaganathan, D., Bohra, A., Thudi, M., & Varshney, R. K. (2020). Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theoretical and Applied Genetics, 133(5), 1791-1810. doi:10.1007/s00122-020-03560-w
Kumar, J., Gupta, D. S., Gupta, S., Dubey, S., Gupta, P., & Kumar, S. (2017). Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Reports, 36(8), 1187-1213. doi:10.1007/s00299-017-2127-y
Mackay, I., & Powell, W. (2007). Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 12(2), 57-63. doi:10.1016/j.tplants.2006.12.001
RAKSHIT, S., RAKSHIT, A., & PATIL, J. V. (2012). Multiparent intercross populations in analysis of quantitative traits. Journal of Genetics, 91(1), 111-117. doi:10.1007/s12041-012-0144-8
Zaw, H., Raghavan, C., Pocsedio, A., Swamy, B. P. M., Jubay, M. L., Singh, R. K., … Leung, H. (2019). Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population. Scientific Reports, 9(1). doi:10.1038/s41598-019-55357-7
Han, Z., Hu, G., Liu, H., Liang, F., Yang, L., Zhao, H., … Xing, Y. (2019). Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theoretical and Applied Genetics, 133(1), 59-71. doi:10.1007/s00122-019-03440-y
Scott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity, 125(6), 396-416. doi:10.1038/s41437-020-0336-6
Xu, Y., Li, P., Yang, Z., & Xu, C. (2017). Genetic mapping of quantitative trait loci in crops. The Crop Journal, 5(2), 175-184. doi:10.1016/j.cj.2016.06.003
Clarke, J. H., Mithen, R., Brown, J. K. M., & Dean, C. (1995). QTL analysis of flowering time inArabidopsis thaliana. Molecular and General Genetics MGG, 248(3), 278-286. doi:10.1007/bf02191594
Grandillo, S., & Tanksley, S. D. (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theoretical and Applied Genetics, 92(8), 935-951. doi:10.1007/bf00224033
Keurentjes, J. J. B., Bentsink, L., Alonso-Blanco, C., Hanhart, C. J., Blankestijn-De Vries, H., Effgen, S., … Koornneef, M. (2007). Development of a Near-Isogenic Line Population of Arabidopsis thaliana and Comparison of Mapping Power With a Recombinant Inbred Line Population. Genetics, 175(2), 891-905. doi:10.1534/genetics.106.066423
Price, A. H. (2006). Believe it or not, QTLs are accurate! Trends in Plant Science, 11(5), 213-216. doi:10.1016/j.tplants.2006.03.006
Pandey, M. K., Roorkiwal, M., Singh, V. K., Ramalingam, A., Kudapa, H., Thudi, M., … Varshney, R. K. (2016). Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00455
Dell’Acqua, M., Gatti, D. M., Pea, G., Cattonaro, F., Coppens, F., Magris, G., … Pè, M. E. (2015). Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 16(1). doi:10.1186/s13059-015-0716-z
Huang, B. E., George, A. W., Forrest, K. L., Kilian, A., Hayden, M. J., Morell, M. K., & Cavanagh, C. R. (2012). A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnology Journal, 10(7), 826-839. doi:10.1111/j.1467-7652.2012.00702.x
Valdar, W., Flint, J., & Mott, R. (2006). Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice. Genetics, 172(3), 1783-1797. doi:10.1534/genetics.104.039313
Chen, X., Fu, S., Zhang, P., Gu, Z., Liu, J., Qian, Q., & Ma, B. (2013). Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. Rice, 6(1). doi:10.1186/1939-8433-6-1
Hall, D., Tegstrom, C., & Ingvarsson, P. K. (2010). Using association mapping to dissect the genetic basis of complex traits in plants. Briefings in Functional Genomics, 9(2), 157-165. doi:10.1093/bfgp/elp048
Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282
Mackay, I. J., Bansept-Basler, P., Barber, T., Bentley, A. R., Cockram, J., Gosman, N., … Howell, P. J. (2014). An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation. G3 Genes|Genomes|Genetics, 4(9), 1603-1610. doi:10.1534/g3.114.012963
Ongom, P. O., & Ejeta, G. (2018). Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum (Sorghum bicolor (L.) Moench). G3 Genes|Genomes|Genetics, 8(1), 331-341. doi:10.1534/g3.117.300248
Mitchell-Olds, T. (2010). Complex-trait analysis in plants. Genome Biology, 11(4), 113. doi:10.1186/gb-2010-11-4-113
Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9(1), 29. doi:10.1186/1746-4811-9-29
Beck, T., Shorter, T., & Brookes, A. J. (2019). GWAS Central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Research. doi:10.1093/nar/gkz895
Tian, D., Wang, P., Tang, B., Teng, X., Li, C., Liu, X., … Zhang, Z. (2019). GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Research, 48(D1), D927-D932. doi:10.1093/nar/gkz828
Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five Years of GWAS Discovery. The American Journal of Human Genetics, 90(1), 7-24. doi:10.1016/j.ajhg.2011.11.029
Kover, P. X., & Mott, R. (2012). Mapping the genetic basis of ecologically and evolutionarily relevant traits in Arabidopsis thaliana. Current Opinion in Plant Biology, 15(2), 212-217. doi:10.1016/j.pbi.2012.02.002
Harlan, H. V., & Martini, M. L. (1929). A Composite Hybrid Mixture
1. Agronomy Journal, 21(4), 487-490. doi:10.2134/agronj1929.00021962002100040014x
Suneson, C. A. (1956). An Evolutionary Plant Breeding Method
1. Agronomy Journal, 48(4), 188-191. doi:10.2134/agronj1956.00021962004800040012x
Kover, P. X., Valdar, W., Trakalo, J., Scarcelli, N., Ehrenreich, I. M., Purugganan, M. D., … Mott, R. (2009). A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLoS Genetics, 5(7), e1000551. doi:10.1371/journal.pgen.1000551
Huynh, B., Ehlers, J. D., Huang, B. E., Muñoz‐Amatriaín, M., Lonardi, S., Santos, J. R. P., … Roberts, P. A. (2018). A multi‐parent advanced generation inter‐cross (
MAGIC
) population for genetic analysis and improvement of cowpea (
Vigna unguiculata
L. Walp.). The Plant Journal, 93(6), 1129-1142. doi:10.1111/tpj.13827
Yamamoto, E., Iwata, H., Tanabata, T., Mizobuchi, R., Yonemaru, J., Yamamoto, T., & Yano, M. (2014). Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent population: a simulation study in rice. BMC Genetics, 15(1), 50. doi:10.1186/1471-2156-15-50
Sallam, A., & Martsch, R. (2015). Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica, 143(4), 501-514. doi:10.1007/s10709-015-9848-z
Diouf, I., Derivot, L., Koussevitzky, S., Carretero, Y., Bitton, F., Moreau, L., & Causse, M. (2020). Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population. Journal of Experimental Botany, 71(18), 5365-5376. doi:10.1093/jxb/eraa265
Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M.-D., … Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4(1), 23-29. doi:10.1038/s41477-017-0083-8
Chiurugwi, T., Kemp, S., Powell, W., & Hickey, L. T. (2018). Speed breeding orphan crops. Theoretical and Applied Genetics, 132(3), 607-616. doi:10.1007/s00122-018-3202-7
Huang, B. E., & George, A. W. (2011). R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics, 27(5), 727-729. doi:10.1093/bioinformatics/btq719
Sannemann, W., Huang, B. E., Mathew, B., & Léon, J. (2015). Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding, 35(3). doi:10.1007/s11032-015-0284-7
Broman, K. W., Gatti, D. M., Simecek, P., Furlotte, N. A., Prins, P., Sen, Ś., … Churchill, G. A. (2018). R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multi-parent populations. doi:10.1101/414748
Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. doi:10.1017/s0080456800012163
Wilson, S. R. (1978). A note on assortative mating, linkage and genotypic frequencies. Annals of Human Genetics, 42(1), 129-130. doi:10.1111/j.1469-1809.1978.tb00937.x
Li, D. G., Li, Z. X., Hu, J. S., Lin, Z. X., & Li, X. F. (2016). Polymorphism analysis of multi-parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in China. Genetics and Molecular Research, 15(4). doi:10.4238/gmr15048759
Broman, K. W. (2005). The Genomes of Recombinant Inbred Lines. Genetics, 169(2), 1133-1146. doi:10.1534/genetics.104.035212
Campanelli, G., Sestili, S., Acciarri, N., Montemurro, F., Palma, D., Leteo, F., & Beretta, M. (2019). Multi-Parental Advances Generation Inter-Cross Population, to Develop Organic Tomato Genotypes by Participatory Plant Breeding. Agronomy, 9(3), 119. doi:10.3390/agronomy9030119
Stadlmeier, M., Hartl, L., & Mohler, V. (2018). Usefulness of a Multiparent Advanced Generation Intercross Population With a Greatly Reduced Mating Design for Genetic Studies in Winter Wheat. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01825
Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/g00-043
Gramazio, P., Lerma, M. D., Villanueva, G., Vilanova, S., García‐Fortea, E., Mangino, G., … Plazas, M. (2019). Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant. Annals of Applied Biology, 175(2), 172-183. doi:10.1111/aab.12527
Shah, R., Huang, B. E., Whan, A., Newberry, M., Verbyla, K., Morell, M. K., & Cavanagh, C. R. (2019). The complex genetic architecture of recombination and structural variation in wheat uncovered using a large 8-founder MAGIC population. doi:10.1101/594317
Zheng, C., Boer, M. P., & van Eeuwijk, F. A. (2019). Construction of Genetic Linkage Maps in Multiparental Populations. Genetics, 212(4), 1031-1044. doi:10.1534/genetics.119.302229
Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C., & Flint, J. (2000). A method for fine mapping quantitative trait loci in outbred animal stocks. Proceedings of the National Academy of Sciences, 97(23), 12649-12654. doi:10.1073/pnas.230304397
Broman, K. W., Wu, H., Sen, S., & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19(7), 889-890. doi:10.1093/bioinformatics/btg112
Ogawa, D., Yamamoto, E., Ohtani, T., Kanno, N., Tsunematsu, H., Nonoue, Y., … Yonemaru, J. (2018). Haplotype-based allele mining in the Japan-MAGIC rice population. Scientific Reports, 8(1). doi:10.1038/s41598-018-22657-3
Sannemann, W., Lisker, A., Maurer, A., Léon, J., Kazman, E., Cöster, H., … Pillen, K. (2018). Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genomics, 19(1). doi:10.1186/s12864-018-4915-3
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308
Islam, M. S., Thyssen, G. N., Jenkins, J. N., Zeng, L., Delhom, C. D., McCarty, J. C., … Fang, D. D. (2016). A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics, 17(1). doi:10.1186/s12864-016-3249-2
Milner, S. G., Maccaferri, M., Huang, B. E., Mantovani, P., Massi, A., Frascaroli, E., … Salvi, S. (2015). A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidumssp.durum). Plant Biotechnology Journal, 14(2), 735-748. doi:10.1111/pbi.12424
Yan, W., Zhao, H., Yu, K., Wang, T., Khattak, A. N., & Tian, E. (2020). Development of a multiparent advanced generation intercross (MAGIC) population for genetic exploitation of complex traits in
Brassica juncea
: Glucosinolate content as an example. Plant Breeding, 139(4), 779-789. doi:10.1111/pbr.12820
Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., … Zhang, Z. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics, 28(18), 2397-2399. doi:10.1093/bioinformatics/bts444
Anderson, S. L., Mahan, A. L., Murray, S. C., & Klein, P. E. (2018). Four Parent Maize (FPM) Population: Effects of Mating Designs on Linkage Disequilibrium and Mapping Quantitative Traits. The Plant Genome, 11(2), 170102. doi:10.3835/plantgenome2017.11.0102
Verbyla, A. P., Cullis, B. R., & Thompson, R. (2007). The analysis of QTL by simultaneous use of the full linkage map. Theoretical and Applied Genetics, 116(1), 95-111. doi:10.1007/s00122-007-0650-x
Verbyla, A. P., Cavanagh, C. R., & Verbyla, K. L. (2014). Whole-Genome Analysis of Multienvironment or Multitrait QTL in MAGIC. G3 Genes|Genomes|Genetics, 4(9), 1569-1584. doi:10.1534/g3.114.012971
Rebetzke, G. J., Verbyla, A. P., Verbyla, K. L., Morell, M. K., & Cavanagh, C. R. (2013). Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnology Journal, 12(2), 219-230. doi:10.1111/pbi.12130
Haley, C. S., & Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69(4), 315-324. doi:10.1038/hdy.1992.131
Huang, X., Paulo, M.-J., Boer, M., Effgen, S., Keizer, P., Koornneef, M., & van Eeuwijk, F. A. (2011). Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proceedings of the National Academy of Sciences, 108(11), 4488-4493. doi:10.1073/pnas.1100465108
Thépot, S., Restoux, G., Goldringer, I., Hospital, F., Gouache, D., Mackay, I., & Enjalbert, J. (2014). Efficiently Tracking Selection in a Multiparental Population: The Case of Earliness in Wheat. Genetics, 199(2), 609-623. doi:10.1534/genetics.114.169995
Li, Z., Ye, G., Yang, M., Liu, Z., Lu, D., Mao, X., … Li, X. (2014). Genetic characterization of a multiparent recombinant inbred line of rice population. Research on Crops, 15(1), 28. doi:10.5958/j.2348-7542.15.1.004
Meng, L., Guo, L., Ponce, K., Zhao, X., & Ye, G. (2016). Characterization of Three
Indica
Rice Multiparent Advanced Generation Intercross (MAGIC) Populations for Quantitative Trait Loci Identification. The Plant Genome, 9(2). doi:10.3835/plantgenome2015.10.0109
Gaur, P. M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S. B., Jayalakshmi, V., … Dixit, G. P. (2018). Integrated breeding approaches for improving drought and heat adaptation in chickpea (
Cicer arietinum
L.). Plant Breeding, 138(4), 389-400. doi:10.1111/pbr.12641
Khazaei, H., Stoddard, F. L., Purves, R. W., & Vandenberg, A. (2018). A multi-parent faba bean (Vicia faba L.) population for future genomic studies. Plant Genetic Resources: Characterization and Utilization, 16(5), 419-423. doi:10.1017/s1479262118000242
Mondal, A., Mukhopadhyay, P., Basu, N., Bandyopadhyay, S. K., & Chatterjee, T. (2018). Identification of Unique Characteristics of Deception from Facial Expression. Current Science, 114(04), 901. doi:10.18520/cs/v114/i04/901-906
Wada, T., Oku, K., Nagano, S., Isobe, S., Suzuki, H., Mori, M., … Shibato, Y. (2017). Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars. Breeding Science, 67(4), 370-381. doi:10.1270/jsbbs.17009
Varshney, R. K. (2016). Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Science, 242, 98-107. doi:10.1016/j.plantsci.2015.09.009
Gaur, P. M., Jukanti, A. K., & Varshney, R. K. (2012). Impact of Genomic Technologies on Chickpea Breeding Strategies. Agronomy, 2(3), 199-221. doi:10.3390/agronomy2030199
Develop MAGIC and Biparental Populations Following SSD (2) Phenotyping of Populations for Target Traits. Agricultural Research Knowledge 2017https://hdl.handle.net/20.500.11766/6640
Smýkal, P., Nelson, M., Berger, J., & Von Wettberg, E. (2018). The Impact of Genetic Changes during Crop Domestication. Agronomy, 8(7), 119. doi:10.3390/agronomy8070119
Purugganan, M. D. (2019). Evolutionary Insights into the Nature of Plant Domestication. Current Biology, 29(14), R705-R714. doi:10.1016/j.cub.2019.05.053
Mascher, M., Schreiber, M., Scholz, U., Graner, A., Reif, J. C., & Stein, N. (2019). Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nature Genetics, 51(7), 1076-1081. doi:10.1038/s41588-019-0443-6
Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9
Yoshimi, M., Kitamura, Y., Isshiki, S., Saito, T., Yasumoto, K., Terachi, T., & Yamagishi, H. (2013). Variations in the structure and transcription of the mitochondrial atp and cox genes in wild Solanum species that induce male sterility in eggplant (S. melongena). Theoretical and Applied Genetics, 126(7), 1851-1859. doi:10.1007/s00122-013-2097-6
Allard, A., Bink, M. C. A. M., Martinez, S., Kelner, J.-J., Legave, J.-M., di Guardo, M., … Costes, E. (2016). Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. Journal of Experimental Botany, 67(9), 2875-2888. doi:10.1093/jxb/erw130
Zhang, L., Li, H., Ding, J., Wu, J., & Wang, J. (2015). Quantitative trait locus mapping with background control in genetic populations of clonal F1
and double cross. Journal of Integrative Plant Biology, 57(12), 1046-1062. doi:10.1111/jipb.12361
Li, X.-F., Liu, Z.-X., Lu, D.-B., Liu, Y.-Z., Mao, X.-X., Li, Z.-X., & Li, H.-J. (2013). Development and evaluation of multi-genotype varieties of rice derived from MAGIC lines. Euphytica, 192(1), 77-86. doi:10.1007/s10681-013-0879-1
Alves, F. C., Granato, Í. S. C., Galli, G., Lyra, D. H., Fritsche-Neto, R., & de los Campos, G. (2019). Bayesian analysis and prediction of hybrid performance. Plant Methods, 15(1). doi:10.1186/s13007-019-0388-x
Raggi, L., Ciancaleoni, S., Torricelli, R., Terzi, V., Ceccarelli, S., & Negri, V. (2017). Evolutionary breeding for sustainable agriculture: Selection and multi-environmental evaluation of barley populations and lines. Field Crops Research, 204, 76-88. doi:10.1016/j.fcr.2017.01.011
Masoni, A., Calamai, A., Marini, L., Benedettelli, S., & Palchetti, E. (2019). Constitution of Composite Cross Maize (Zea mays L.) Populations Selected for the Semi-Arid Environment of South Madagascar. Agronomy, 10(1), 54. doi:10.3390/agronomy10010054
Moore, G. (2015). Strategic pre-breeding for wheat improvement. Nature Plants, 1(3). doi:10.1038/nplants.2015.18
[-]