- -

The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material

Show full item record

Arrones-Olmo, A.; Vilanova Navarro, S.; Plazas Ávila, MDLO.; Mangino, G.; Pascual, L.; Díez, MJ.; Prohens Tomás, J.... (2020). The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material. Biology. 9(8):1-25. https://doi.org/10.3390/biology9080229

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167463

Files in this item

Item Metadata

Title: The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material
Author: Arrones-Olmo, Andrea Vilanova Navarro, Santiago Plazas Ávila, María de la O Mangino, Giulio Pascual, Laura Díez, María José Prohens Tomás, Jaime Gramazio, Pietro
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
[EN] The compelling need to increase global agricultural production requires new breeding approaches that facilitate exploiting the diversity available in the plant genetic resources. Multi-parent advanced generation ...[+]
Subjects: MAGIC population , Mapping populations , RILs , QTLs , Association analysis , Breeding resources , Public-private partnerships , Climate change
Copyrigths: Reconocimiento (by)
Biology. (eissn: 2079-7737 )
DOI: 10.3390/biology9080229
Publisher version: https://doi.org/10.3390/biology9080229
Project ID:
info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/
info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/
This work has been funded by Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-100 from MCIU/AEI/FEDER, UE) and by European ...[+]
Type: Artículo


Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302-12308. doi:10.1073/pnas.0912953109

Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109-118. doi:10.1038/s41586-019-1679-0

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE, 8(6), e66428. doi:10.1371/journal.pone.0066428 [+]
Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302-12308. doi:10.1073/pnas.0912953109

Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109-118. doi:10.1038/s41586-019-1679-0

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE, 8(6), e66428. doi:10.1371/journal.pone.0066428

Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience, 67(4), 386-391. doi:10.1093/biosci/bix010

Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., & Chatterjee, S. (2019). Climate change has likely already affected global food production. PLOS ONE, 14(5), e0217148. doi:10.1371/journal.pone.0217148

Doerge, R. W. (2002). Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics, 3(1), 43-52. doi:10.1038/nrg703

HOLLAND, J. (2007). Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 10(2), 156-161. doi:10.1016/j.pbi.2007.01.003

Geldermann, H. (1975). Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. Theoretical and Applied Genetics, 46(7), 319-330. doi:10.1007/bf00281673

Pradhan, P., Fischer, G., van Velthuizen, H., Reusser, D. E., & Kropp, J. P. (2015). Closing Yield Gaps: How Sustainable Can We Be? PLOS ONE, 10(6), e0129487. doi:10.1371/journal.pone.0129487

Mei, J., Shao, C., Yang, R., Feng, Y., Gao, Y., Ding, Y., … Qian, W. (2020). Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theoretical and Applied Genetics, 133(4), 1313-1319. doi:10.1007/s00122-020-03552-w

Muthu, V., Abbai, R., Nallathambi, J., Rahman, H., Ramasamy, S., Kambale, R., … Muthurajan, R. (2020). Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLOS ONE, 15(1), e0227421. doi:10.1371/journal.pone.0227421

Sehgal, D., & Dreisigacker, S. (2019). Haplotypes-based genetic analysis: benefits and challenges. Vavilov Journal of Genetics and Breeding, 23(7), 803-808. doi:10.18699/vj19.37-o

Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. doi:10.1007/s10681-005-1681-5

Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11(2), 215-221. doi:10.1016/j.pbi.2008.01.002

Huang, B. E., Verbyla, K. L., Verbyla, A. P., Raghavan, C., Singh, V. K., Gaur, P., … Cavanagh, C. R. (2015). MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics, 128(6), 999-1017. doi:10.1007/s00122-015-2506-0

Jaganathan, D., Bohra, A., Thudi, M., & Varshney, R. K. (2020). Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theoretical and Applied Genetics, 133(5), 1791-1810. doi:10.1007/s00122-020-03560-w

Kumar, J., Gupta, D. S., Gupta, S., Dubey, S., Gupta, P., & Kumar, S. (2017). Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Reports, 36(8), 1187-1213. doi:10.1007/s00299-017-2127-y

Mackay, I., & Powell, W. (2007). Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 12(2), 57-63. doi:10.1016/j.tplants.2006.12.001

RAKSHIT, S., RAKSHIT, A., & PATIL, J. V. (2012). Multiparent intercross populations in analysis of quantitative traits. Journal of Genetics, 91(1), 111-117. doi:10.1007/s12041-012-0144-8

Zaw, H., Raghavan, C., Pocsedio, A., Swamy, B. P. M., Jubay, M. L., Singh, R. K., … Leung, H. (2019). Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population. Scientific Reports, 9(1). doi:10.1038/s41598-019-55357-7

Han, Z., Hu, G., Liu, H., Liang, F., Yang, L., Zhao, H., … Xing, Y. (2019). Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theoretical and Applied Genetics, 133(1), 59-71. doi:10.1007/s00122-019-03440-y

Scott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity, 125(6), 396-416. doi:10.1038/s41437-020-0336-6

Xu, Y., Li, P., Yang, Z., & Xu, C. (2017). Genetic mapping of quantitative trait loci in crops. The Crop Journal, 5(2), 175-184. doi:10.1016/j.cj.2016.06.003

Clarke, J. H., Mithen, R., Brown, J. K. M., & Dean, C. (1995). QTL analysis of flowering time inArabidopsis thaliana. Molecular and General Genetics MGG, 248(3), 278-286. doi:10.1007/bf02191594

Grandillo, S., & Tanksley, S. D. (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theoretical and Applied Genetics, 92(8), 935-951. doi:10.1007/bf00224033

Keurentjes, J. J. B., Bentsink, L., Alonso-Blanco, C., Hanhart, C. J., Blankestijn-De Vries, H., Effgen, S., … Koornneef, M. (2007). Development of a Near-Isogenic Line Population of Arabidopsis thaliana and Comparison of Mapping Power With a Recombinant Inbred Line Population. Genetics, 175(2), 891-905. doi:10.1534/genetics.106.066423

Price, A. H. (2006). Believe it or not, QTLs are accurate! Trends in Plant Science, 11(5), 213-216. doi:10.1016/j.tplants.2006.03.006

Pandey, M. K., Roorkiwal, M., Singh, V. K., Ramalingam, A., Kudapa, H., Thudi, M., … Varshney, R. K. (2016). Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00455

Dell’Acqua, M., Gatti, D. M., Pea, G., Cattonaro, F., Coppens, F., Magris, G., … Pè, M. E. (2015). Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 16(1). doi:10.1186/s13059-015-0716-z

Huang, B. E., George, A. W., Forrest, K. L., Kilian, A., Hayden, M. J., Morell, M. K., & Cavanagh, C. R. (2012). A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnology Journal, 10(7), 826-839. doi:10.1111/j.1467-7652.2012.00702.x

Valdar, W., Flint, J., & Mott, R. (2006). Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice. Genetics, 172(3), 1783-1797. doi:10.1534/genetics.104.039313

Chen, X., Fu, S., Zhang, P., Gu, Z., Liu, J., Qian, Q., & Ma, B. (2013). Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. Rice, 6(1). doi:10.1186/1939-8433-6-1

Hall, D., Tegstrom, C., & Ingvarsson, P. K. (2010). Using association mapping to dissect the genetic basis of complex traits in plants. Briefings in Functional Genomics, 9(2), 157-165. doi:10.1093/bfgp/elp048

Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282

Mackay, I. J., Bansept-Basler, P., Barber, T., Bentley, A. R., Cockram, J., Gosman, N., … Howell, P. J. (2014). An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation. G3 Genes|Genomes|Genetics, 4(9), 1603-1610. doi:10.1534/g3.114.012963

Ongom, P. O., & Ejeta, G. (2018). Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum (Sorghum bicolor (L.) Moench). G3 Genes|Genomes|Genetics, 8(1), 331-341. doi:10.1534/g3.117.300248

Mitchell-Olds, T. (2010). Complex-trait analysis in plants. Genome Biology, 11(4), 113. doi:10.1186/gb-2010-11-4-113

Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9(1), 29. doi:10.1186/1746-4811-9-29

Beck, T., Shorter, T., & Brookes, A. J. (2019). GWAS Central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Research. doi:10.1093/nar/gkz895

Tian, D., Wang, P., Tang, B., Teng, X., Li, C., Liu, X., … Zhang, Z. (2019). GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Research, 48(D1), D927-D932. doi:10.1093/nar/gkz828

Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five Years of GWAS Discovery. The American Journal of Human Genetics, 90(1), 7-24. doi:10.1016/j.ajhg.2011.11.029

Kover, P. X., & Mott, R. (2012). Mapping the genetic basis of ecologically and evolutionarily relevant traits in Arabidopsis thaliana. Current Opinion in Plant Biology, 15(2), 212-217. doi:10.1016/j.pbi.2012.02.002

Harlan, H. V., & Martini, M. L. (1929). A Composite Hybrid Mixture 1. Agronomy Journal, 21(4), 487-490. doi:10.2134/agronj1929.00021962002100040014x

Suneson, C. A. (1956). An Evolutionary Plant Breeding Method 1. Agronomy Journal, 48(4), 188-191. doi:10.2134/agronj1956.00021962004800040012x

Kover, P. X., Valdar, W., Trakalo, J., Scarcelli, N., Ehrenreich, I. M., Purugganan, M. D., … Mott, R. (2009). A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLoS Genetics, 5(7), e1000551. doi:10.1371/journal.pgen.1000551

Huynh, B., Ehlers, J. D., Huang, B. E., Muñoz‐Amatriaín, M., Lonardi, S., Santos, J. R. P., … Roberts, P. A. (2018). A multi‐parent advanced generation inter‐cross ( MAGIC ) population for genetic analysis and improvement of cowpea ( Vigna unguiculata L. Walp.). The Plant Journal, 93(6), 1129-1142. doi:10.1111/tpj.13827

Yamamoto, E., Iwata, H., Tanabata, T., Mizobuchi, R., Yonemaru, J., Yamamoto, T., & Yano, M. (2014). Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent population: a simulation study in rice. BMC Genetics, 15(1), 50. doi:10.1186/1471-2156-15-50

Sallam, A., & Martsch, R. (2015). Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica, 143(4), 501-514. doi:10.1007/s10709-015-9848-z

Diouf, I., Derivot, L., Koussevitzky, S., Carretero, Y., Bitton, F., Moreau, L., & Causse, M. (2020). Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population. Journal of Experimental Botany, 71(18), 5365-5376. doi:10.1093/jxb/eraa265

Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M.-D., … Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4(1), 23-29. doi:10.1038/s41477-017-0083-8

Chiurugwi, T., Kemp, S., Powell, W., & Hickey, L. T. (2018). Speed breeding orphan crops. Theoretical and Applied Genetics, 132(3), 607-616. doi:10.1007/s00122-018-3202-7

Huang, B. E., & George, A. W. (2011). R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics, 27(5), 727-729. doi:10.1093/bioinformatics/btq719

Sannemann, W., Huang, B. E., Mathew, B., & Léon, J. (2015). Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding, 35(3). doi:10.1007/s11032-015-0284-7

Broman, K. W., Gatti, D. M., Simecek, P., Furlotte, N. A., Prins, P., Sen, Ś., … Churchill, G. A. (2018). R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multi-parent populations. doi:10.1101/414748

Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. doi:10.1017/s0080456800012163

Wilson, S. R. (1978). A note on assortative mating, linkage and genotypic frequencies. Annals of Human Genetics, 42(1), 129-130. doi:10.1111/j.1469-1809.1978.tb00937.x

Li, D. G., Li, Z. X., Hu, J. S., Lin, Z. X., & Li, X. F. (2016). Polymorphism analysis of multi-parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in China. Genetics and Molecular Research, 15(4). doi:10.4238/gmr15048759

Broman, K. W. (2005). The Genomes of Recombinant Inbred Lines. Genetics, 169(2), 1133-1146. doi:10.1534/genetics.104.035212

Campanelli, G., Sestili, S., Acciarri, N., Montemurro, F., Palma, D., Leteo, F., & Beretta, M. (2019). Multi-Parental Advances Generation Inter-Cross Population, to Develop Organic Tomato Genotypes by Participatory Plant Breeding. Agronomy, 9(3), 119. doi:10.3390/agronomy9030119

Stadlmeier, M., Hartl, L., & Mohler, V. (2018). Usefulness of a Multiparent Advanced Generation Intercross Population With a Greatly Reduced Mating Design for Genetic Studies in Winter Wheat. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01825

Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/g00-043

Gramazio, P., Lerma, M. D., Villanueva, G., Vilanova, S., García‐Fortea, E., Mangino, G., … Plazas, M. (2019). Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant. Annals of Applied Biology, 175(2), 172-183. doi:10.1111/aab.12527

Shah, R., Huang, B. E., Whan, A., Newberry, M., Verbyla, K., Morell, M. K., & Cavanagh, C. R. (2019). The complex genetic architecture of recombination and structural variation in wheat uncovered using a large 8-founder MAGIC population. doi:10.1101/594317

Zheng, C., Boer, M. P., & van Eeuwijk, F. A. (2019). Construction of Genetic Linkage Maps in Multiparental Populations. Genetics, 212(4), 1031-1044. doi:10.1534/genetics.119.302229

Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C., & Flint, J. (2000). A method for fine mapping quantitative trait loci in outbred animal stocks. Proceedings of the National Academy of Sciences, 97(23), 12649-12654. doi:10.1073/pnas.230304397

Broman, K. W., Wu, H., Sen, S., & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19(7), 889-890. doi:10.1093/bioinformatics/btg112

Ogawa, D., Yamamoto, E., Ohtani, T., Kanno, N., Tsunematsu, H., Nonoue, Y., … Yonemaru, J. (2018). Haplotype-based allele mining in the Japan-MAGIC rice population. Scientific Reports, 8(1). doi:10.1038/s41598-018-22657-3

Sannemann, W., Lisker, A., Maurer, A., Léon, J., Kazman, E., Cöster, H., … Pillen, K. (2018). Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genomics, 19(1). doi:10.1186/s12864-018-4915-3

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308

Islam, M. S., Thyssen, G. N., Jenkins, J. N., Zeng, L., Delhom, C. D., McCarty, J. C., … Fang, D. D. (2016). A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics, 17(1). doi:10.1186/s12864-016-3249-2

Milner, S. G., Maccaferri, M., Huang, B. E., Mantovani, P., Massi, A., Frascaroli, E., … Salvi, S. (2015). A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidumssp.durum). Plant Biotechnology Journal, 14(2), 735-748. doi:10.1111/pbi.12424

Yan, W., Zhao, H., Yu, K., Wang, T., Khattak, A. N., & Tian, E. (2020). Development of a multiparent advanced generation intercross (MAGIC) population for genetic exploitation of complex traits in Brassica juncea  : Glucosinolate content as an example. Plant Breeding, 139(4), 779-789. doi:10.1111/pbr.12820

Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., … Zhang, Z. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics, 28(18), 2397-2399. doi:10.1093/bioinformatics/bts444

Anderson, S. L., Mahan, A. L., Murray, S. C., & Klein, P. E. (2018). Four Parent Maize (FPM) Population: Effects of Mating Designs on Linkage Disequilibrium and Mapping Quantitative Traits. The Plant Genome, 11(2), 170102. doi:10.3835/plantgenome2017.11.0102

Verbyla, A. P., Cullis, B. R., & Thompson, R. (2007). The analysis of QTL by simultaneous use of the full linkage map. Theoretical and Applied Genetics, 116(1), 95-111. doi:10.1007/s00122-007-0650-x

Verbyla, A. P., Cavanagh, C. R., & Verbyla, K. L. (2014). Whole-Genome Analysis of Multienvironment or Multitrait QTL in MAGIC. G3 Genes|Genomes|Genetics, 4(9), 1569-1584. doi:10.1534/g3.114.012971

Rebetzke, G. J., Verbyla, A. P., Verbyla, K. L., Morell, M. K., & Cavanagh, C. R. (2013). Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnology Journal, 12(2), 219-230. doi:10.1111/pbi.12130

Haley, C. S., & Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69(4), 315-324. doi:10.1038/hdy.1992.131

Huang, X., Paulo, M.-J., Boer, M., Effgen, S., Keizer, P., Koornneef, M., & van Eeuwijk, F. A. (2011). Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proceedings of the National Academy of Sciences, 108(11), 4488-4493. doi:10.1073/pnas.1100465108

Thépot, S., Restoux, G., Goldringer, I., Hospital, F., Gouache, D., Mackay, I., & Enjalbert, J. (2014). Efficiently Tracking Selection in a Multiparental Population: The Case of Earliness in Wheat. Genetics, 199(2), 609-623. doi:10.1534/genetics.114.169995

Li, Z., Ye, G., Yang, M., Liu, Z., Lu, D., Mao, X., … Li, X. (2014). Genetic characterization of a multiparent recombinant inbred line of rice population. Research on Crops, 15(1), 28. doi:10.5958/j.2348-7542.15.1.004

Meng, L., Guo, L., Ponce, K., Zhao, X., & Ye, G. (2016). Characterization of Three Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Populations for Quantitative Trait Loci Identification. The Plant Genome, 9(2). doi:10.3835/plantgenome2015.10.0109

Gaur, P. M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S. B., Jayalakshmi, V., … Dixit, G. P. (2018). Integrated breeding approaches for improving drought and heat adaptation in chickpea ( Cicer arietinum L.). Plant Breeding, 138(4), 389-400. doi:10.1111/pbr.12641

Khazaei, H., Stoddard, F. L., Purves, R. W., & Vandenberg, A. (2018). A multi-parent faba bean (Vicia faba L.) population for future genomic studies. Plant Genetic Resources: Characterization and Utilization, 16(5), 419-423. doi:10.1017/s1479262118000242

Mondal, A., Mukhopadhyay, P., Basu, N., Bandyopadhyay, S. K., & Chatterjee, T. (2018). Identification of Unique Characteristics of Deception from Facial Expression. Current Science, 114(04), 901. doi:10.18520/cs/v114/i04/901-906

Wada, T., Oku, K., Nagano, S., Isobe, S., Suzuki, H., Mori, M., … Shibato, Y. (2017). Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars. Breeding Science, 67(4), 370-381. doi:10.1270/jsbbs.17009

Varshney, R. K. (2016). Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Science, 242, 98-107. doi:10.1016/j.plantsci.2015.09.009

Gaur, P. M., Jukanti, A. K., & Varshney, R. K. (2012). Impact of Genomic Technologies on Chickpea Breeding Strategies. Agronomy, 2(3), 199-221. doi:10.3390/agronomy2030199

Develop MAGIC and Biparental Populations Following SSD (2) Phenotyping of Populations for Target Traits. Agricultural Research Knowledge 2017https://hdl.handle.net/20.500.11766/6640

Smýkal, P., Nelson, M., Berger, J., & Von Wettberg, E. (2018). The Impact of Genetic Changes during Crop Domestication. Agronomy, 8(7), 119. doi:10.3390/agronomy8070119

Purugganan, M. D. (2019). Evolutionary Insights into the Nature of Plant Domestication. Current Biology, 29(14), R705-R714. doi:10.1016/j.cub.2019.05.053

Mascher, M., Schreiber, M., Scholz, U., Graner, A., Reif, J. C., & Stein, N. (2019). Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nature Genetics, 51(7), 1076-1081. doi:10.1038/s41588-019-0443-6

Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9

Yoshimi, M., Kitamura, Y., Isshiki, S., Saito, T., Yasumoto, K., Terachi, T., & Yamagishi, H. (2013). Variations in the structure and transcription of the mitochondrial atp and cox genes in wild Solanum species that induce male sterility in eggplant (S. melongena). Theoretical and Applied Genetics, 126(7), 1851-1859. doi:10.1007/s00122-013-2097-6

Allard, A., Bink, M. C. A. M., Martinez, S., Kelner, J.-J., Legave, J.-M., di Guardo, M., … Costes, E. (2016). Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. Journal of Experimental Botany, 67(9), 2875-2888. doi:10.1093/jxb/erw130

Zhang, L., Li, H., Ding, J., Wu, J., & Wang, J. (2015). Quantitative trait locus mapping with background control in genetic populations of clonal F1 and double cross. Journal of Integrative Plant Biology, 57(12), 1046-1062. doi:10.1111/jipb.12361

Li, X.-F., Liu, Z.-X., Lu, D.-B., Liu, Y.-Z., Mao, X.-X., Li, Z.-X., & Li, H.-J. (2013). Development and evaluation of multi-genotype varieties of rice derived from MAGIC lines. Euphytica, 192(1), 77-86. doi:10.1007/s10681-013-0879-1

Alves, F. C., Granato, Í. S. C., Galli, G., Lyra, D. H., Fritsche-Neto, R., & de los Campos, G. (2019). Bayesian analysis and prediction of hybrid performance. Plant Methods, 15(1). doi:10.1186/s13007-019-0388-x

Raggi, L., Ciancaleoni, S., Torricelli, R., Terzi, V., Ceccarelli, S., & Negri, V. (2017). Evolutionary breeding for sustainable agriculture: Selection and multi-environmental evaluation of barley populations and lines. Field Crops Research, 204, 76-88. doi:10.1016/j.fcr.2017.01.011

Masoni, A., Calamai, A., Marini, L., Benedettelli, S., & Palchetti, E. (2019). Constitution of Composite Cross Maize (Zea mays L.) Populations Selected for the Semi-Arid Environment of South Madagascar. Agronomy, 10(1), 54. doi:10.3390/agronomy10010054

Moore, G. (2015). Strategic pre-breeding for wheat improvement. Nature Plants, 1(3). doi:10.1038/nplants.2015.18




This item appears in the following Collection(s)

Show full item record