- -

The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arrones-Olmo, Andrea es_ES
dc.contributor.author Vilanova Navarro, Santiago es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.contributor.author Mangino, Giulio es_ES
dc.contributor.author Pascual, Laura es_ES
dc.contributor.author Díez, María José es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Gramazio, Pietro es_ES
dc.date.accessioned 2021-06-08T03:31:48Z
dc.date.available 2021-06-08T03:31:48Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167463
dc.description.abstract [EN] The compelling need to increase global agricultural production requires new breeding approaches that facilitate exploiting the diversity available in the plant genetic resources. Multi-parent advanced generation inter-cross (MAGIC) populations are large sets of recombinant inbred lines (RILs) that are a genetic mosaic of multiple founder parents. MAGIC populations display emerging features over experimental bi-parental and germplasm populations in combining significant levels of genetic recombination, a lack of genetic structure, and high genetic and phenotypic diversity. The development of MAGIC populations can be performed using ¿funnel¿ or ¿diallel¿ cross-designs, which are of great relevance choosing appropriate parents and defining optimal population sizes. Significant advances in specific software development are facilitating the genetic analysis of the complex genetic constitutions of MAGIC populations. Despite the complexity and the resources required in their development, due to their potential and interest for breeding, the number of MAGIC populations available and under development is continuously growing, with 45 MAGIC populations in different crops being reported here. Though cereals are by far the crop group where more MAGIC populations have been developed, MAGIC populations have also started to become available in other crop groups. The results obtained so far demonstrate that MAGIC populations are a very powerful tool for the dissection of complex traits, as well as a resource for the selection of recombinant elite breeding material and cultivars. In addition, some new MAGIC approaches that can make significant contributions to breeding, such as the development of inter-specific MAGIC populations, the development of MAGIC-like populations in crops where pure lines are not available, and the establishment of strategies for the straightforward incorporation of MAGIC materials in breeding pipelines, have barely been explored. The evidence that is already available indicates that MAGIC populations will play a major role in the coming years in allowing for impressive gains in plant breeding for developing new generations of dramatically improved cultivars. es_ES
dc.description.sponsorship This work has been funded by Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-100 from MCIU/AEI/FEDER, UE) and by European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 677379 (Linking genetic resources, genomes and phenotypes of Solanaceous crops; G2P-SOL). Andrea Arrones is grateful to Spanish Ministerio de Ciencia, Innovacion y Universidades for a pre-doctoral (FPU18/01742) contract. Mariola Plazas is grateful to Generalitat Valenciana and Fondo Social Europeo for a post-doctoral grant (APOSTD/2018/014). Pietro Gramazio is grateful to Japan Society for the Promotion of Science for a post-doctoral grant (P19105, FY2019 JSPS Postdoctoral Fellowship for Research in Japan [Standard]). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject MAGIC population es_ES
dc.subject Mapping populations es_ES
dc.subject RILs es_ES
dc.subject QTLs es_ES
dc.subject Association analysis es_ES
dc.subject Breeding resources es_ES
dc.subject Public-private partnerships es_ES
dc.subject Climate change es_ES
dc.subject.classification GENETICA es_ES
dc.title The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/biology9080229 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JSPS//FY2019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-094592-B-100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JSPS//P19105/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPU18%2F01742/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Arrones-Olmo, A.; Vilanova Navarro, S.; Plazas Ávila, MDLO.; Mangino, G.; Pascual, L.; Díez, MJ.; Prohens Tomás, J.... (2020). The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material. Biology. 9(8):1-25. https://doi.org/10.3390/biology9080229 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/biology9080229 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2079-7737 es_ES
dc.identifier.pmid 32824319 es_ES
dc.identifier.pmcid PMC7465826 es_ES
dc.relation.pasarela S\431367 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Japan Society for the Promotion of Science es_ES
dc.description.references Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302-12308. doi:10.1073/pnas.0912953109 es_ES
dc.description.references Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109-118. doi:10.1038/s41586-019-1679-0 es_ES
dc.description.references Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE, 8(6), e66428. doi:10.1371/journal.pone.0066428 es_ES
dc.description.references Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience, 67(4), 386-391. doi:10.1093/biosci/bix010 es_ES
dc.description.references Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., & Chatterjee, S. (2019). Climate change has likely already affected global food production. PLOS ONE, 14(5), e0217148. doi:10.1371/journal.pone.0217148 es_ES
dc.description.references Doerge, R. W. (2002). Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics, 3(1), 43-52. doi:10.1038/nrg703 es_ES
dc.description.references HOLLAND, J. (2007). Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 10(2), 156-161. doi:10.1016/j.pbi.2007.01.003 es_ES
dc.description.references Geldermann, H. (1975). Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. Theoretical and Applied Genetics, 46(7), 319-330. doi:10.1007/bf00281673 es_ES
dc.description.references Pradhan, P., Fischer, G., van Velthuizen, H., Reusser, D. E., & Kropp, J. P. (2015). Closing Yield Gaps: How Sustainable Can We Be? PLOS ONE, 10(6), e0129487. doi:10.1371/journal.pone.0129487 es_ES
dc.description.references Mei, J., Shao, C., Yang, R., Feng, Y., Gao, Y., Ding, Y., … Qian, W. (2020). Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theoretical and Applied Genetics, 133(4), 1313-1319. doi:10.1007/s00122-020-03552-w es_ES
dc.description.references Muthu, V., Abbai, R., Nallathambi, J., Rahman, H., Ramasamy, S., Kambale, R., … Muthurajan, R. (2020). Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLOS ONE, 15(1), e0227421. doi:10.1371/journal.pone.0227421 es_ES
dc.description.references Sehgal, D., & Dreisigacker, S. (2019). Haplotypes-based genetic analysis: benefits and challenges. Vavilov Journal of Genetics and Breeding, 23(7), 803-808. doi:10.18699/vj19.37-o es_ES
dc.description.references Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. doi:10.1007/s10681-005-1681-5 es_ES
dc.description.references Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11(2), 215-221. doi:10.1016/j.pbi.2008.01.002 es_ES
dc.description.references Huang, B. E., Verbyla, K. L., Verbyla, A. P., Raghavan, C., Singh, V. K., Gaur, P., … Cavanagh, C. R. (2015). MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics, 128(6), 999-1017. doi:10.1007/s00122-015-2506-0 es_ES
dc.description.references Jaganathan, D., Bohra, A., Thudi, M., & Varshney, R. K. (2020). Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theoretical and Applied Genetics, 133(5), 1791-1810. doi:10.1007/s00122-020-03560-w es_ES
dc.description.references Kumar, J., Gupta, D. S., Gupta, S., Dubey, S., Gupta, P., & Kumar, S. (2017). Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Reports, 36(8), 1187-1213. doi:10.1007/s00299-017-2127-y es_ES
dc.description.references Mackay, I., & Powell, W. (2007). Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 12(2), 57-63. doi:10.1016/j.tplants.2006.12.001 es_ES
dc.description.references RAKSHIT, S., RAKSHIT, A., & PATIL, J. V. (2012). Multiparent intercross populations in analysis of quantitative traits. Journal of Genetics, 91(1), 111-117. doi:10.1007/s12041-012-0144-8 es_ES
dc.description.references Zaw, H., Raghavan, C., Pocsedio, A., Swamy, B. P. M., Jubay, M. L., Singh, R. K., … Leung, H. (2019). Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population. Scientific Reports, 9(1). doi:10.1038/s41598-019-55357-7 es_ES
dc.description.references Han, Z., Hu, G., Liu, H., Liang, F., Yang, L., Zhao, H., … Xing, Y. (2019). Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theoretical and Applied Genetics, 133(1), 59-71. doi:10.1007/s00122-019-03440-y es_ES
dc.description.references Scott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity, 125(6), 396-416. doi:10.1038/s41437-020-0336-6 es_ES
dc.description.references Xu, Y., Li, P., Yang, Z., & Xu, C. (2017). Genetic mapping of quantitative trait loci in crops. The Crop Journal, 5(2), 175-184. doi:10.1016/j.cj.2016.06.003 es_ES
dc.description.references Clarke, J. H., Mithen, R., Brown, J. K. M., & Dean, C. (1995). QTL analysis of flowering time inArabidopsis thaliana. Molecular and General Genetics MGG, 248(3), 278-286. doi:10.1007/bf02191594 es_ES
dc.description.references Grandillo, S., & Tanksley, S. D. (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theoretical and Applied Genetics, 92(8), 935-951. doi:10.1007/bf00224033 es_ES
dc.description.references Keurentjes, J. J. B., Bentsink, L., Alonso-Blanco, C., Hanhart, C. J., Blankestijn-De Vries, H., Effgen, S., … Koornneef, M. (2007). Development of a Near-Isogenic Line Population of Arabidopsis thaliana and Comparison of Mapping Power With a Recombinant Inbred Line Population. Genetics, 175(2), 891-905. doi:10.1534/genetics.106.066423 es_ES
dc.description.references Price, A. H. (2006). Believe it or not, QTLs are accurate! Trends in Plant Science, 11(5), 213-216. doi:10.1016/j.tplants.2006.03.006 es_ES
dc.description.references Pandey, M. K., Roorkiwal, M., Singh, V. K., Ramalingam, A., Kudapa, H., Thudi, M., … Varshney, R. K. (2016). Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00455 es_ES
dc.description.references Dell’Acqua, M., Gatti, D. M., Pea, G., Cattonaro, F., Coppens, F., Magris, G., … Pè, M. E. (2015). Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 16(1). doi:10.1186/s13059-015-0716-z es_ES
dc.description.references Huang, B. E., George, A. W., Forrest, K. L., Kilian, A., Hayden, M. J., Morell, M. K., & Cavanagh, C. R. (2012). A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnology Journal, 10(7), 826-839. doi:10.1111/j.1467-7652.2012.00702.x es_ES
dc.description.references Valdar, W., Flint, J., & Mott, R. (2006). Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice. Genetics, 172(3), 1783-1797. doi:10.1534/genetics.104.039313 es_ES
dc.description.references Chen, X., Fu, S., Zhang, P., Gu, Z., Liu, J., Qian, Q., & Ma, B. (2013). Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. Rice, 6(1). doi:10.1186/1939-8433-6-1 es_ES
dc.description.references Hall, D., Tegstrom, C., & Ingvarsson, P. K. (2010). Using association mapping to dissect the genetic basis of complex traits in plants. Briefings in Functional Genomics, 9(2), 157-165. doi:10.1093/bfgp/elp048 es_ES
dc.description.references Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282 es_ES
dc.description.references Mackay, I. J., Bansept-Basler, P., Barber, T., Bentley, A. R., Cockram, J., Gosman, N., … Howell, P. J. (2014). An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation. G3 Genes|Genomes|Genetics, 4(9), 1603-1610. doi:10.1534/g3.114.012963 es_ES
dc.description.references Ongom, P. O., & Ejeta, G. (2018). Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum (Sorghum bicolor (L.) Moench). G3 Genes|Genomes|Genetics, 8(1), 331-341. doi:10.1534/g3.117.300248 es_ES
dc.description.references Mitchell-Olds, T. (2010). Complex-trait analysis in plants. Genome Biology, 11(4), 113. doi:10.1186/gb-2010-11-4-113 es_ES
dc.description.references Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9(1), 29. doi:10.1186/1746-4811-9-29 es_ES
dc.description.references Beck, T., Shorter, T., & Brookes, A. J. (2019). GWAS Central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Research. doi:10.1093/nar/gkz895 es_ES
dc.description.references Tian, D., Wang, P., Tang, B., Teng, X., Li, C., Liu, X., … Zhang, Z. (2019). GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Research, 48(D1), D927-D932. doi:10.1093/nar/gkz828 es_ES
dc.description.references Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five Years of GWAS Discovery. The American Journal of Human Genetics, 90(1), 7-24. doi:10.1016/j.ajhg.2011.11.029 es_ES
dc.description.references Kover, P. X., & Mott, R. (2012). Mapping the genetic basis of ecologically and evolutionarily relevant traits in Arabidopsis thaliana. Current Opinion in Plant Biology, 15(2), 212-217. doi:10.1016/j.pbi.2012.02.002 es_ES
dc.description.references Harlan, H. V., & Martini, M. L. (1929). A Composite Hybrid Mixture 1. Agronomy Journal, 21(4), 487-490. doi:10.2134/agronj1929.00021962002100040014x es_ES
dc.description.references Suneson, C. A. (1956). An Evolutionary Plant Breeding Method 1. Agronomy Journal, 48(4), 188-191. doi:10.2134/agronj1956.00021962004800040012x es_ES
dc.description.references Kover, P. X., Valdar, W., Trakalo, J., Scarcelli, N., Ehrenreich, I. M., Purugganan, M. D., … Mott, R. (2009). A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLoS Genetics, 5(7), e1000551. doi:10.1371/journal.pgen.1000551 es_ES
dc.description.references Huynh, B., Ehlers, J. D., Huang, B. E., Muñoz‐Amatriaín, M., Lonardi, S., Santos, J. R. P., … Roberts, P. A. (2018). A multi‐parent advanced generation inter‐cross ( MAGIC ) population for genetic analysis and improvement of cowpea ( Vigna unguiculata L. Walp.). The Plant Journal, 93(6), 1129-1142. doi:10.1111/tpj.13827 es_ES
dc.description.references Yamamoto, E., Iwata, H., Tanabata, T., Mizobuchi, R., Yonemaru, J., Yamamoto, T., & Yano, M. (2014). Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent population: a simulation study in rice. BMC Genetics, 15(1), 50. doi:10.1186/1471-2156-15-50 es_ES
dc.description.references Sallam, A., & Martsch, R. (2015). Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica, 143(4), 501-514. doi:10.1007/s10709-015-9848-z es_ES
dc.description.references Diouf, I., Derivot, L., Koussevitzky, S., Carretero, Y., Bitton, F., Moreau, L., & Causse, M. (2020). Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population. Journal of Experimental Botany, 71(18), 5365-5376. doi:10.1093/jxb/eraa265 es_ES
dc.description.references Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M.-D., … Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4(1), 23-29. doi:10.1038/s41477-017-0083-8 es_ES
dc.description.references Chiurugwi, T., Kemp, S., Powell, W., & Hickey, L. T. (2018). Speed breeding orphan crops. Theoretical and Applied Genetics, 132(3), 607-616. doi:10.1007/s00122-018-3202-7 es_ES
dc.description.references Huang, B. E., & George, A. W. (2011). R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics, 27(5), 727-729. doi:10.1093/bioinformatics/btq719 es_ES
dc.description.references Sannemann, W., Huang, B. E., Mathew, B., & Léon, J. (2015). Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding, 35(3). doi:10.1007/s11032-015-0284-7 es_ES
dc.description.references Broman, K. W., Gatti, D. M., Simecek, P., Furlotte, N. A., Prins, P., Sen, Ś., … Churchill, G. A. (2018). R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multi-parent populations. doi:10.1101/414748 es_ES
dc.description.references Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. doi:10.1017/s0080456800012163 es_ES
dc.description.references Wilson, S. R. (1978). A note on assortative mating, linkage and genotypic frequencies. Annals of Human Genetics, 42(1), 129-130. doi:10.1111/j.1469-1809.1978.tb00937.x es_ES
dc.description.references Li, D. G., Li, Z. X., Hu, J. S., Lin, Z. X., & Li, X. F. (2016). Polymorphism analysis of multi-parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in China. Genetics and Molecular Research, 15(4). doi:10.4238/gmr15048759 es_ES
dc.description.references Broman, K. W. (2005). The Genomes of Recombinant Inbred Lines. Genetics, 169(2), 1133-1146. doi:10.1534/genetics.104.035212 es_ES
dc.description.references Campanelli, G., Sestili, S., Acciarri, N., Montemurro, F., Palma, D., Leteo, F., & Beretta, M. (2019). Multi-Parental Advances Generation Inter-Cross Population, to Develop Organic Tomato Genotypes by Participatory Plant Breeding. Agronomy, 9(3), 119. doi:10.3390/agronomy9030119 es_ES
dc.description.references Stadlmeier, M., Hartl, L., & Mohler, V. (2018). Usefulness of a Multiparent Advanced Generation Intercross Population With a Greatly Reduced Mating Design for Genetic Studies in Winter Wheat. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01825 es_ES
dc.description.references Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/g00-043 es_ES
dc.description.references Gramazio, P., Lerma, M. D., Villanueva, G., Vilanova, S., García‐Fortea, E., Mangino, G., … Plazas, M. (2019). Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant. Annals of Applied Biology, 175(2), 172-183. doi:10.1111/aab.12527 es_ES
dc.description.references Shah, R., Huang, B. E., Whan, A., Newberry, M., Verbyla, K., Morell, M. K., & Cavanagh, C. R. (2019). The complex genetic architecture of recombination and structural variation in wheat uncovered using a large 8-founder MAGIC population. doi:10.1101/594317 es_ES
dc.description.references Zheng, C., Boer, M. P., & van Eeuwijk, F. A. (2019). Construction of Genetic Linkage Maps in Multiparental Populations. Genetics, 212(4), 1031-1044. doi:10.1534/genetics.119.302229 es_ES
dc.description.references Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C., & Flint, J. (2000). A method for fine mapping quantitative trait loci in outbred animal stocks. Proceedings of the National Academy of Sciences, 97(23), 12649-12654. doi:10.1073/pnas.230304397 es_ES
dc.description.references Broman, K. W., Wu, H., Sen, S., & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19(7), 889-890. doi:10.1093/bioinformatics/btg112 es_ES
dc.description.references Ogawa, D., Yamamoto, E., Ohtani, T., Kanno, N., Tsunematsu, H., Nonoue, Y., … Yonemaru, J. (2018). Haplotype-based allele mining in the Japan-MAGIC rice population. Scientific Reports, 8(1). doi:10.1038/s41598-018-22657-3 es_ES
dc.description.references Sannemann, W., Lisker, A., Maurer, A., Léon, J., Kazman, E., Cöster, H., … Pillen, K. (2018). Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genomics, 19(1). doi:10.1186/s12864-018-4915-3 es_ES
dc.description.references Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308 es_ES
dc.description.references Islam, M. S., Thyssen, G. N., Jenkins, J. N., Zeng, L., Delhom, C. D., McCarty, J. C., … Fang, D. D. (2016). A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics, 17(1). doi:10.1186/s12864-016-3249-2 es_ES
dc.description.references Milner, S. G., Maccaferri, M., Huang, B. E., Mantovani, P., Massi, A., Frascaroli, E., … Salvi, S. (2015). A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidumssp.durum). Plant Biotechnology Journal, 14(2), 735-748. doi:10.1111/pbi.12424 es_ES
dc.description.references Yan, W., Zhao, H., Yu, K., Wang, T., Khattak, A. N., & Tian, E. (2020). Development of a multiparent advanced generation intercross (MAGIC) population for genetic exploitation of complex traits in Brassica juncea  : Glucosinolate content as an example. Plant Breeding, 139(4), 779-789. doi:10.1111/pbr.12820 es_ES
dc.description.references Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., … Zhang, Z. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics, 28(18), 2397-2399. doi:10.1093/bioinformatics/bts444 es_ES
dc.description.references Anderson, S. L., Mahan, A. L., Murray, S. C., & Klein, P. E. (2018). Four Parent Maize (FPM) Population: Effects of Mating Designs on Linkage Disequilibrium and Mapping Quantitative Traits. The Plant Genome, 11(2), 170102. doi:10.3835/plantgenome2017.11.0102 es_ES
dc.description.references Verbyla, A. P., Cullis, B. R., & Thompson, R. (2007). The analysis of QTL by simultaneous use of the full linkage map. Theoretical and Applied Genetics, 116(1), 95-111. doi:10.1007/s00122-007-0650-x es_ES
dc.description.references Verbyla, A. P., Cavanagh, C. R., & Verbyla, K. L. (2014). Whole-Genome Analysis of Multienvironment or Multitrait QTL in MAGIC. G3 Genes|Genomes|Genetics, 4(9), 1569-1584. doi:10.1534/g3.114.012971 es_ES
dc.description.references Rebetzke, G. J., Verbyla, A. P., Verbyla, K. L., Morell, M. K., & Cavanagh, C. R. (2013). Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnology Journal, 12(2), 219-230. doi:10.1111/pbi.12130 es_ES
dc.description.references Haley, C. S., & Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69(4), 315-324. doi:10.1038/hdy.1992.131 es_ES
dc.description.references Huang, X., Paulo, M.-J., Boer, M., Effgen, S., Keizer, P., Koornneef, M., & van Eeuwijk, F. A. (2011). Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proceedings of the National Academy of Sciences, 108(11), 4488-4493. doi:10.1073/pnas.1100465108 es_ES
dc.description.references Thépot, S., Restoux, G., Goldringer, I., Hospital, F., Gouache, D., Mackay, I., & Enjalbert, J. (2014). Efficiently Tracking Selection in a Multiparental Population: The Case of Earliness in Wheat. Genetics, 199(2), 609-623. doi:10.1534/genetics.114.169995 es_ES
dc.description.references Li, Z., Ye, G., Yang, M., Liu, Z., Lu, D., Mao, X., … Li, X. (2014). Genetic characterization of a multiparent recombinant inbred line of rice population. Research on Crops, 15(1), 28. doi:10.5958/j.2348-7542.15.1.004 es_ES
dc.description.references Meng, L., Guo, L., Ponce, K., Zhao, X., & Ye, G. (2016). Characterization of Three Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Populations for Quantitative Trait Loci Identification. The Plant Genome, 9(2). doi:10.3835/plantgenome2015.10.0109 es_ES
dc.description.references Gaur, P. M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S. B., Jayalakshmi, V., … Dixit, G. P. (2018). Integrated breeding approaches for improving drought and heat adaptation in chickpea ( Cicer arietinum L.). Plant Breeding, 138(4), 389-400. doi:10.1111/pbr.12641 es_ES
dc.description.references Khazaei, H., Stoddard, F. L., Purves, R. W., & Vandenberg, A. (2018). A multi-parent faba bean (Vicia faba L.) population for future genomic studies. Plant Genetic Resources: Characterization and Utilization, 16(5), 419-423. doi:10.1017/s1479262118000242 es_ES
dc.description.references Mondal, A., Mukhopadhyay, P., Basu, N., Bandyopadhyay, S. K., & Chatterjee, T. (2018). Identification of Unique Characteristics of Deception from Facial Expression. Current Science, 114(04), 901. doi:10.18520/cs/v114/i04/901-906 es_ES
dc.description.references Wada, T., Oku, K., Nagano, S., Isobe, S., Suzuki, H., Mori, M., … Shibato, Y. (2017). Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars. Breeding Science, 67(4), 370-381. doi:10.1270/jsbbs.17009 es_ES
dc.description.references Varshney, R. K. (2016). Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Science, 242, 98-107. doi:10.1016/j.plantsci.2015.09.009 es_ES
dc.description.references Gaur, P. M., Jukanti, A. K., & Varshney, R. K. (2012). Impact of Genomic Technologies on Chickpea Breeding Strategies. Agronomy, 2(3), 199-221. doi:10.3390/agronomy2030199 es_ES
dc.description.references Develop MAGIC and Biparental Populations Following SSD (2) Phenotyping of Populations for Target Traits. Agricultural Research Knowledge 2017https://hdl.handle.net/20.500.11766/6640 es_ES
dc.description.references Smýkal, P., Nelson, M., Berger, J., & Von Wettberg, E. (2018). The Impact of Genetic Changes during Crop Domestication. Agronomy, 8(7), 119. doi:10.3390/agronomy8070119 es_ES
dc.description.references Purugganan, M. D. (2019). Evolutionary Insights into the Nature of Plant Domestication. Current Biology, 29(14), R705-R714. doi:10.1016/j.cub.2019.05.053 es_ES
dc.description.references Mascher, M., Schreiber, M., Scholz, U., Graner, A., Reif, J. C., & Stein, N. (2019). Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nature Genetics, 51(7), 1076-1081. doi:10.1038/s41588-019-0443-6 es_ES
dc.description.references Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9 es_ES
dc.description.references Yoshimi, M., Kitamura, Y., Isshiki, S., Saito, T., Yasumoto, K., Terachi, T., & Yamagishi, H. (2013). Variations in the structure and transcription of the mitochondrial atp and cox genes in wild Solanum species that induce male sterility in eggplant (S. melongena). Theoretical and Applied Genetics, 126(7), 1851-1859. doi:10.1007/s00122-013-2097-6 es_ES
dc.description.references Allard, A., Bink, M. C. A. M., Martinez, S., Kelner, J.-J., Legave, J.-M., di Guardo, M., … Costes, E. (2016). Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. Journal of Experimental Botany, 67(9), 2875-2888. doi:10.1093/jxb/erw130 es_ES
dc.description.references Zhang, L., Li, H., Ding, J., Wu, J., & Wang, J. (2015). Quantitative trait locus mapping with background control in genetic populations of clonal F1 and double cross. Journal of Integrative Plant Biology, 57(12), 1046-1062. doi:10.1111/jipb.12361 es_ES
dc.description.references Li, X.-F., Liu, Z.-X., Lu, D.-B., Liu, Y.-Z., Mao, X.-X., Li, Z.-X., & Li, H.-J. (2013). Development and evaluation of multi-genotype varieties of rice derived from MAGIC lines. Euphytica, 192(1), 77-86. doi:10.1007/s10681-013-0879-1 es_ES
dc.description.references Alves, F. C., Granato, Í. S. C., Galli, G., Lyra, D. H., Fritsche-Neto, R., & de los Campos, G. (2019). Bayesian analysis and prediction of hybrid performance. Plant Methods, 15(1). doi:10.1186/s13007-019-0388-x es_ES
dc.description.references Raggi, L., Ciancaleoni, S., Torricelli, R., Terzi, V., Ceccarelli, S., & Negri, V. (2017). Evolutionary breeding for sustainable agriculture: Selection and multi-environmental evaluation of barley populations and lines. Field Crops Research, 204, 76-88. doi:10.1016/j.fcr.2017.01.011 es_ES
dc.description.references Masoni, A., Calamai, A., Marini, L., Benedettelli, S., & Palchetti, E. (2019). Constitution of Composite Cross Maize (Zea mays L.) Populations Selected for the Semi-Arid Environment of South Madagascar. Agronomy, 10(1), 54. doi:10.3390/agronomy10010054 es_ES
dc.description.references Moore, G. (2015). Strategic pre-breeding for wheat improvement. Nature Plants, 1(3). doi:10.1038/nplants.2015.18 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem