- -

Flexible resonance in prefrontal networks with strong feedback inhibition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Flexible resonance in prefrontal networks with strong feedback inhibition

Mostrar el registro completo del ítem

Sherfey, JS.; Ardid-Ramírez, JS.; Hass, J.; Hasselmo, ME.; Kopell, NJ. (2018). Flexible resonance in prefrontal networks with strong feedback inhibition. PLoS Computational Biology. 14(8). https://doi.org/10.1371/journal.pcbi.1006357

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167608

Ficheros en el ítem

Metadatos del ítem

Título: Flexible resonance in prefrontal networks with strong feedback inhibition
Autor: Sherfey, Jason S. Ardid-Ramírez, Joan Salvador Hass, Joachim Hasselmo, Michael E. Kopell, Nancy J.
Entidad UPV: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
[EN] Oscillations are ubiquitous features of brain dynamics that undergo task-related changes in synchrony, power, and frequency. The impact of those changes on target networks is poorly understood. In this work, we used ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS Computational Biology. (issn: 1553-734X )
DOI: 10.1371/journal.pcbi.1006357
Editorial:
Public Library of Science
Versión del editor: https://doi.org/10.1371/journal.pcbi.1006357
Código del Proyecto:
info:eu-repo/grantAgreement/ARO//W911NF-12-R-0012-02/US/Event-Driven Game Theory for Predicting Dynamical Systems/
info:eu-repo/grantAgreement/NSF//1042134/US/Cognitive Rhythms Collaborative: A Discovery Network/
info:eu-repo/grantAgreement/ONR//N00014-16-1-2832/US/ONR MURI: Neural circuits underlying symbolic processing in primate cortex and basal ganglia/
Agradecimientos:
This material is based upon research supported by the U. S. Army Research Office under award number ARO W911NF-12-R-0012-02 to N. K., the U. S. Office of Naval Research under award number ONR MURI N00014-16-1-2832 to M. ...[+]
Tipo: Artículo

References

Whittington, M. A., Traub, R. D., & Jefferys, J. G. R. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373(6515), 612-615. doi:10.1038/373612a0

Randall, F. E., Whittington, M. A., & Cunningham, M. O. (2011). Fast oscillatory activity induced by kainate receptor activation in the rat basolateral amygdala in vitro. European Journal of Neuroscience, 33(5), 914-922. doi:10.1111/j.1460-9568.2010.07582.x

Roux, F., Wibral, M., Mohr, H. M., Singer, W., & Uhlhaas, P. J. (2012). Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory. Journal of Neuroscience, 32(36), 12411-12420. doi:10.1523/jneurosci.0421-12.2012 [+]
Whittington, M. A., Traub, R. D., & Jefferys, J. G. R. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373(6515), 612-615. doi:10.1038/373612a0

Randall, F. E., Whittington, M. A., & Cunningham, M. O. (2011). Fast oscillatory activity induced by kainate receptor activation in the rat basolateral amygdala in vitro. European Journal of Neuroscience, 33(5), 914-922. doi:10.1111/j.1460-9568.2010.07582.x

Roux, F., Wibral, M., Mohr, H. M., Singer, W., & Uhlhaas, P. J. (2012). Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory. Journal of Neuroscience, 32(36), 12411-12420. doi:10.1523/jneurosci.0421-12.2012

Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex. Neuron, 76(4), 838-846. doi:10.1016/j.neuron.2012.09.029

Buzsáki, G. (2002). Theta Oscillations in the Hippocampus. Neuron, 33(3), 325-340. doi:10.1016/s0896-6273(02)00586-x

Cannon, J., McCarthy, M. M., Lee, S., Lee, J., Börgers, C., Whittington, M. A., & Kopell, N. (2013). Neurosystems: brain rhythms and cognitive processing. European Journal of Neuroscience, 39(5), 705-719. doi:10.1111/ejn.12453

Rotstein, H. G., & Nadim, F. (2013). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37(1), 9-28. doi:10.1007/s10827-013-0483-3

Rotstein, H. G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: Nonlinear effects generated by the interplay of resonant and amplifying currents. Journal of Computational Neuroscience, 38(2), 325-354. doi:10.1007/s10827-014-0544-2

Akam, T., & Kullmann, D. M. (2010). Oscillations and Filtering Networks Support Flexible Routing of Information. Neuron, 67(2), 308-320. doi:10.1016/j.neuron.2010.06.019

Ledoux, E., & Brunel, N. (2011). Dynamics of Networks of Excitatory and Inhibitory Neurons in Response to Time-Dependent Inputs. Frontiers in Computational Neuroscience, 5. doi:10.3389/fncom.2011.00025

Whittington, M. ., Traub, R. ., Kopell, N., Ermentrout, B., & Buhl, E. . (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International Journal of Psychophysiology, 38(3), 315-336. doi:10.1016/s0167-8760(00)00173-2

Börgers, C., & Kopell, N. (2005). Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons. Neural Computation, 17(3), 557-608. doi:10.1162/0899766053019908

Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science, 304(5679), 1926-1929. doi:10.1126/science.1099745

Hahn, G., Bujan, A. F., Frégnac, Y., Aertsen, A., & Kumar, A. (2014). Communication through Resonance in Spiking Neuronal Networks. PLoS Computational Biology, 10(8), e1003811. doi:10.1371/journal.pcbi.1003811

Womelsdorf, T., Ardid, S., Everling, S., & Valiante, T. A. (2014). Burst Firing Synchronizes Prefrontal and Anterior Cingulate Cortex during Attentional Control. Current Biology, 24(22), 2613-2621. doi:10.1016/j.cub.2014.09.046

Buschman, T. J., & Miller, E. K. (2007). Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices. Science, 315(5820), 1860-1862. doi:10.1126/science.1138071

Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23(2), 216-222. doi:10.1016/j.conb.2012.11.011

Haegens, S., Nacher, V., Hernandez, A., Luna, R., Jensen, O., & Romo, R. (2011). Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making. Proceedings of the National Academy of Sciences, 108(26), 10708-10713. doi:10.1073/pnas.1107297108

Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121-134. doi:10.1038/nrn3137

Thut, G., & Miniussi, C. (2009). New insights into rhythmic brain activity from TMS–EEG studies. Trends in Cognitive Sciences, 13(4), 182-189. doi:10.1016/j.tics.2009.01.004

Herrmann, C. S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00279

Dowsett, J., & Herrmann, C. S. (2016). Transcranial Alternating Current Stimulation with Sawtooth Waves: Simultaneous Stimulation and EEG Recording. Frontiers in Human Neuroscience, 10. doi:10.3389/fnhum.2016.00135

Moliadze, V., Atalay, D., Antal, A., & Paulus, W. (2012). Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimulation, 5(4), 505-511. doi:10.1016/j.brs.2011.11.004

Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K. D. (2010). The Asynchronous State in Cortical Circuits. Science, 327(5965), 587-590. doi:10.1126/science.1179850

Wang, X.-J. (1999). Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory. The Journal of Neuroscience, 19(21), 9587-9603. doi:10.1523/jneurosci.19-21-09587.1999

Tegnér, J., Compte, A., & Wang, X.-J. (2002). The dynamical stability of reverberatory neural circuits. Biological Cybernetics, 87(5-6), 471-481. doi:10.1007/s00422-002-0363-9

Giulioni, M., Camilleri, P., Mattia, M., Dante, V., Braun, J., & Del Giudice, P. (2012). Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI. Frontiers in Neuroscience, 5. doi:10.3389/fnins.2011.00149

Compte, A. (2000). Synaptic Mechanisms and Network Dynamics Underlying Spatial Working Memory in a Cortical Network Model. Cerebral Cortex, 10(9), 910-923. doi:10.1093/cercor/10.9.910

Ardid, S., Wang, X.-J., Gomez-Cabrero, D., & Compte, A. (2010). Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas. Journal of Neuroscience, 30(8), 2856-2870. doi:10.1523/jneurosci.4222-09.2010

Bastos AM, Loonis R, Kornblith S, Lundqvist M, Miller EK (2018) Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory. Proceedings of the National Academy of Sciences: 201710323.

Shin, D., & Cho, K.-H. (2013). Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication. Scientific Reports, 3(1). doi:10.1038/srep02519

Dong, Y., & White, F. J. (2003). Dopamine D1-Class Receptors Selectively Modulate a Slowly Inactivating Potassium Current in Rat Medial Prefrontal Cortex Pyramidal Neurons. The Journal of Neuroscience, 23(7), 2686-2695. doi:10.1523/jneurosci.23-07-02686.2003

Bloem, B., Poorthuis, R. B., & Mansvelder, H. D. (2014). Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Frontiers in Neural Circuits, 8. doi:10.3389/fncir.2014.00017

Jimenez-Fernandez, A., Cerezuela-Escudero, E., Miro-Amarante, L., Dominguez-Moralse, M. J., de Asis Gomez-Rodriguez, F., Linares-Barranco, A., & Jimenez-Moreno, G. (2017). A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach. IEEE Transactions on Neural Networks and Learning Systems, 28(4), 804-818. doi:10.1109/tnnls.2016.2583223

Lande, T. S. (Ed.). (1998). Neuromorphic Systems Engineering. The Springer International Series in Engineering and Computer Science. doi:10.1007/b102308

Liu, S.-C., & Delbruck, T. (2010). Neuromorphic sensory systems. Current Opinion in Neurobiology, 20(3), 288-295. doi:10.1016/j.conb.2010.03.007

Richardson, M. J. E., Brunel, N., & Hakim, V. (2003). From Subthreshold to Firing-Rate Resonance. Journal of Neurophysiology, 89(5), 2538-2554. doi:10.1152/jn.00955.2002

Chen, Y., Li, X., Rotstein, H. G., & Nadim, F. (2016). Membrane potential resonance frequency directly influences network frequency through electrical coupling. Journal of Neurophysiology, 116(4), 1554-1563. doi:10.1152/jn.00361.2016

Lea-Carnall, C. A., Montemurro, M. A., Trujillo-Barreto, N. J., Parkes, L. M., & El-Deredy, W. (2016). Cortical Resonance Frequencies Emerge from Network Size and Connectivity. PLOS Computational Biology, 12(2), e1004740. doi:10.1371/journal.pcbi.1004740

Adams, N. E., Sherfey, J. S., Kopell, N. J., Whittington, M. A., & LeBeau, F. E. N. (2017). Hetereogeneity in Neuronal Intrinsic Properties: A Possible Mechanism for Hub-Like Properties of the Rat Anterior Cingulate Cortex during Network Activity. eneuro, 4(1), ENEURO.0313-16.2017. doi:10.1523/eneuro.0313-16.2017

Cannon, J., & Kopell, N. (2015). The Leaky Oscillator: Properties of Inhibition-Based Rhythms Revealed through the Singular Phase Response Curve. SIAM Journal on Applied Dynamical Systems, 14(4), 1930-1977. doi:10.1137/140977151

Olufsen, M. S., Whittington, M. A., Camperi, M., & Kopell, N. (2003). Journal of Computational Neuroscience, 14(1), 33-54. doi:10.1023/a:1021124317706

Durstewitz, D., & Seamans, J. K. (2002). The computational role of dopamine D1 receptors in working memory. Neural Networks, 15(4-6), 561-572. doi:10.1016/s0893-6080(02)00049-7

Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-Mediated Stabilization of Delay-Period Activity in a Network Model of Prefrontal Cortex. Journal of Neurophysiology, 83(3), 1733-1750. doi:10.1152/jn.2000.83.3.1733

Nunez, P. L., & Srinivasan, R. (2006). Electric Fields of the Brain. doi:10.1093/acprof:oso/9780195050387.001.0001

Sherfey, J. S., Soplata, A. E., Ardid, S., Roberts, E. A., Stanley, D. A., Pittman-Polletta, B. R., & Kopell, N. J. (2018). DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.00010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem