Wang, H., & Abruña, H. D. (2017). IrPdRu/C as H2 Oxidation Catalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 139(20), 6807-6810. doi:10.1021/jacs.7b02434
Durst, J., Siebel, A., Simon, C., Hasché, F., Herranz, J., & Gasteiger, H. A. (2014). New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci., 7(7), 2255-2260. doi:10.1039/c4ee00440j
Sheng, W., Zhuang, Z., Gao, M., Zheng, J., Chen, J. G., & Yan, Y. (2015). Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nature Communications, 6(1). doi:10.1038/ncomms6848
[+]
Wang, H., & Abruña, H. D. (2017). IrPdRu/C as H2 Oxidation Catalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 139(20), 6807-6810. doi:10.1021/jacs.7b02434
Durst, J., Siebel, A., Simon, C., Hasché, F., Herranz, J., & Gasteiger, H. A. (2014). New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci., 7(7), 2255-2260. doi:10.1039/c4ee00440j
Sheng, W., Zhuang, Z., Gao, M., Zheng, J., Chen, J. G., & Yan, Y. (2015). Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nature Communications, 6(1). doi:10.1038/ncomms6848
Zheng, J., Sheng, W., Zhuang, Z., Xu, B., & Yan, Y. (2016). Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Science Advances, 2(3). doi:10.1126/sciadv.1501602
Sheng, W., Myint, M., Chen, J. G., & Yan, Y. (2013). Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 6(5), 1509. doi:10.1039/c3ee00045a
Elgrishi, N., McCarthy, B. D., Rountree, E. S., & Dempsey, J. L. (2016). Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes. ACS Catalysis, 6(6), 3644-3659. doi:10.1021/acscatal.6b00778
Lu, S., & Zhuang, Z. (2017). Investigating the Influences of the Adsorbed Species on Catalytic Activity for Hydrogen Oxidation Reaction in Alkaline Electrolyte. Journal of the American Chemical Society, 139(14), 5156-5163. doi:10.1021/jacs.7b00765
Ramaswamy, N., Ghoshal, S., Bates, M. K., Jia, Q., Li, J., & Mukerjee, S. (2017). Hydrogen oxidation reaction in alkaline media: Relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy, 41, 765-771. doi:10.1016/j.nanoen.2017.07.053
Davydova, E. S., Mukerjee, S., Jaouen, F., & Dekel, D. R. (2018). Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes. ACS Catalysis, 8(7), 6665-6690. doi:10.1021/acscatal.8b00689
Dekel, D. R. (2018). Unraveling mysteries of hydrogen electrooxidation in anion exchange membrane fuel cells. Current Opinion in Electrochemistry, 12, 182-188. doi:10.1016/j.coelec.2018.11.013
Kibler, L. A. (2006). Hydrogen Electrocatalysis. ChemPhysChem, 7(5), 985-991. doi:10.1002/cphc.200500646
Schuldiner, S., Rosen, M., & Flinn, D. R. (1970). Comparative Activity of (111), (100), (110), and Polycrystalline Platinum Electrodes in H2-Saturated 1M H[sub 2]SO[sub 4] under Potentiostatic Control. Journal of The Electrochemical Society, 117(10), 1251. doi:10.1149/1.2407282
Seto, K., Iannelli, A., Love, B., & Lipkowski, J. (1987). The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 226(1-2), 351-360. doi:10.1016/0022-0728(87)80057-8
Protopopoff, E., & Marcus, P. (1991). Effects of chemisorbed sulphur on the hydrogen adsorption and evolution on metal single crystal surfaces. Journal de Chimie Physique, 88, 1423-1452. doi:10.1051/jcp/1991881423
Kita, H., Ye, S., & Gao, Y. (1992). Mass transfer effect in hydrogen evolution reaction on Pt single-crystal electrodes in acid solution. Journal of Electroanalytical Chemistry, 334(1-2), 351-357. doi:10.1016/0022-0728(92)80583-p
Gomez, R., Fernandez-Vega, A., Feliu, J. M., & Aldaz, A. (1993). Hydrogen evolution on platinum single crystal surfaces: effects of irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on platinum (100). The Journal of Physical Chemistry, 97(18), 4769-4776. doi:10.1021/j100120a032
Conway, B. E., Barber, J., & Morin, S. (1998). Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes. Electrochimica Acta, 44(6-7), 1109-1125. doi:10.1016/s0013-4686(98)00214-x
Marković, N. M., Grgur, B. N., & Ross, P. N. (1997). Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. The Journal of Physical Chemistry B, 101(27), 5405-5413. doi:10.1021/jp970930d
He, Z.-D., Wei, J., Chen, Y.-X., Santos, E., & Schmickler, W. (2017). Hydrogen evolution at Pt(111) – activation energy, frequency factor and hydrogen repulsion. Electrochimica Acta, 255, 391-395. doi:10.1016/j.electacta.2017.09.127
Hoshi, N., Asaumi, Y., Nakamura, M., Mikita, K., & Kajiwara, R. (2009). Structural Effects on the Hydrogen Oxidation Reaction on n(111)−(111) Surfaces of Platinum. The Journal of Physical Chemistry C, 113(39), 16843-16846. doi:10.1021/jp9076239
Kajiwara, R., Asaumi, Y., Nakamura, M., & Hoshi, N. (2011). Active sites for the hydrogen oxidation and the hydrogen evolution reactions on the high index planes of Pt. Journal of Electroanalytical Chemistry, 657(1-2), 61-65. doi:10.1016/j.jelechem.2011.03.011
Pohl, M. D., Watzele, S., Calle-Vallejo, F., & Bandarenka, A. S. (2017). Nature of Highly Active Electrocatalytic Sites for the Hydrogen Evolution Reaction at Pt Electrodes in Acidic Media. ACS Omega, 2(11), 8141-8147. doi:10.1021/acsomega.7b01126
Markovića, N. M., Sarraf, S. T., Gasteiger, H. A., & Ross, P. N. (1996). Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc., Faraday Trans., 92(20), 3719-3725. doi:10.1039/ft9969203719
Schmidt, T. J., Ross, P. N., & Markovic, N. M. (2002). Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes. Journal of Electroanalytical Chemistry, 524-525, 252-260. doi:10.1016/s0022-0728(02)00683-6
Barber, J. H., & Conway, B. E. (1999). Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M dm−3 NaOH. Journal of Electroanalytical Chemistry, 461(1-2), 80-89. doi:10.1016/s0022-0728(98)00161-2
Sheng, W., Gasteiger, H. A., & Shao-Horn, Y. (2010). Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. Journal of The Electrochemical Society, 157(11), B1529. doi:10.1149/1.3483106
Jia, Q., Liu, E., Jiao, L., Li, J., & Mukerjee, S. (2018). Current understandings of the sluggish kinetics of the hydrogen evolution and oxidation reactions in base. Current Opinion in Electrochemistry, 12, 209-217. doi:10.1016/j.coelec.2018.11.017
Katsounaros, I., Meier, J. C., Klemm, S. O., Topalov, A. A., Biedermann, P. U., Auinger, M., & Mayrhofer, K. J. J. (2011). The effective surface pH during reactions at the solid–liquid interface. Electrochemistry Communications, 13(6), 634-637. doi:10.1016/j.elecom.2011.03.032
Auinger, M., Katsounaros, I., Meier, J. C., Klemm, S. O., Biedermann, P. U., Topalov, A. A., … Mayrhofer, K. J. J. (2011). Near-surface ion distribution and buffer effects during electrochemical reactions. Physical Chemistry Chemical Physics, 13(36), 16384. doi:10.1039/c1cp21717h
Zheng, J., Yan, Y., & Xu, B. (2015). Correcting the Hydrogen Diffusion Limitation in Rotating Disk Electrode Measurements of Hydrogen Evolution Reaction Kinetics. Journal of The Electrochemical Society, 162(14), F1470-F1481. doi:10.1149/2.0501514jes
Shinagawa, T., & Takanabe, K. (2015). Electrocatalytic Hydrogen Evolution under Densely Buffered Neutral pH Conditions. The Journal of Physical Chemistry C, 119(35), 20453-20458. doi:10.1021/acs.jpcc.5b05295
Conway, B. E., & Bai, L. (1986). Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 198(1), 149-175. doi:10.1016/0022-0728(86)90033-1
Briega-Martos, V., Herrero, E., & Feliu, J. M. (2017). Effect of pH and Water Structure on the Oxygen Reduction Reaction on platinum electrodes. Electrochimica Acta, 241, 497-509. doi:10.1016/j.electacta.2017.04.162
Strmcnik, D., Uchimura, M., Wang, C., Subbaraman, R., Danilovic, N., van der Vliet, D., … Markovic, N. M. (2013). Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chemistry, 5(4), 300-306. doi:10.1038/nchem.1574
Martínez-Hincapié, R., Sebastián-Pascual, P., Climent, V., & Feliu, J. M. (2015). Exploring the interfacial neutral pH region of Pt(111) electrodes. Electrochemistry Communications, 58, 62-64. doi:10.1016/j.elecom.2015.06.005
Clavilier, J., Faure, R., Guinet, G., & Durand, R. (1980). Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 107(1), 205-209. doi:10.1016/s0022-0728(79)80022-4
Clavilier, J., Armand, D., Sun, S. G., & Petit, M. (1986). Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 205(1-2), 267-277. doi:10.1016/0022-0728(86)90237-8
Herrero, E., Orts, J. M., Aldaz, A., & Feliu, J. M. (1999). Scanning tunneling microscopy and electrochemical study of the surface structure of Pt(10,10,9) and Pt(11,10,10) electrodes prepared under different cooling conditions. Surface Science, 440(1-2), 259-270. doi:10.1016/s0039-6028(99)00813-4
Marković, N. M., Grgur, B. N., Lucas, C. A., & Ross, P. N. (1997). Surface electrochemistry of CO on Pt(110)-(1 × 2) and Pt(110)-(1 × 1) surfaces. Surface Science, 384(1-3), L805-L814. doi:10.1016/s0039-6028(97)00252-5
Attard, G. A., Hunter, K., Wright, E., Sharman, J., Martínez-Hincapié, R., & Feliu, J. M. (2017). The voltammetry of surfaces vicinal to Pt{110}: Structural complexity simplified by CO cooling. Journal of Electroanalytical Chemistry, 793, 137-146. doi:10.1016/j.jelechem.2016.10.005
Briega-Martos, V., Mello, G. A. B., Arán-Ais, R. M., Climent, V., Herrero, E., & Feliu, J. M. (2018). Understandings on the Inhibition of Oxygen Reduction Reaction by Bromide Adsorption on Pt(111) Electrodes at Different pH Values. Journal of The Electrochemical Society, 165(15), J3045-J3051. doi:10.1149/2.0081815jes
Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452
Delley, B. (2002). Hardness conserving semilocal pseudopotentials. Physical Review B, 66(15). doi:10.1103/physrevb.66.155125
Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865
Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.073005
Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684
Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067
Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188
Rizo, R., Sitta, E., Herrero, E., Climent, V., & Feliu, J. M. (2015). Towards the understanding of the interfacial pH scale at Pt(1 1 1) electrodes. Electrochimica Acta, 162, 138-145. doi:10.1016/j.electacta.2015.01.069
Briega-Martos, V., Herrero, E., & Feliu, J. M. (2017). The inhibition of hydrogen peroxide reduction at low potentials on Pt(111): Hydrogen adsorption or interfacial charge? Electrochemistry Communications, 85, 32-35. doi:10.1016/j.elecom.2017.10.016
Iwasita, T., & Xia, X. (1996). Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge. Journal of Electroanalytical Chemistry, 411(1-2), 95-102. doi:10.1016/0022-0728(96)04576-7
Climent, V., Coles, B. A., & Compton, R. G. (2002). Coulostatic Potential Transients Induced by Laser Heating of a Pt(111) Single-Crystal Electrode in Aqueous Acid Solutions. Rate of Hydrogen Adsorption and Potential of Maximum Entropy. The Journal of Physical Chemistry B, 106(23), 5988-5996. doi:10.1021/jp020785q
Pajkossy, T., & Kolb, D. . (2003). On the origin of the double layer capacitance maximum of Pt(111) single crystal electrodes. Electrochemistry Communications, 5(4), 283-285. doi:10.1016/s1388-2481(03)00046-8
Garcia-Araez, N., Climent, V., Herrero, E., Feliu, J. M., & Lipkowski, J. (2006). Thermodynamic approach to the double layer capacity of a Pt(111) electrode in perchloric acid solutions. Electrochimica Acta, 51(18), 3787-3793. doi:10.1016/j.electacta.2005.10.043
Arán-Ais, R. M., Figueiredo, M. C., Vidal-Iglesias, F. J., Climent, V., Herrero, E., & Feliu, J. M. (2011). On the behavior of the Pt(100) and vicinal surfaces in alkaline media. Electrochimica Acta, 58, 184-192. doi:10.1016/j.electacta.2011.09.029
Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R., & Markovic, N. M. (2016). Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 29, 29-36. doi:10.1016/j.nanoen.2016.04.017
Martínez-Hincapié, R., Climent, V., & Feliu, J. M. (2019). New probes to surface free charge at electrochemical interfaces with platinum electrodes. Current Opinion in Electrochemistry, 14, 16-22. doi:10.1016/j.coelec.2018.09.012
Martínez-Hincapié, R., Climent, V., & Feliu, J. M. (2018). Peroxodisulfate reduction as a probe to interfacial charge. Electrochemistry Communications, 88, 43-46. doi:10.1016/j.elecom.2018.01.012
Climent, V., Attard, G. A., & Feliu, J. M. (2002). Potential of zero charge of platinum stepped surfaces: a combined approach of CO charge displacement and N2O reduction. Journal of Electroanalytical Chemistry, 532(1-2), 67-74. doi:10.1016/s0022-0728(02)00849-5
Climent, V., Maciá, M. D., Herrero, E., Feliu, J. M., & Petrii, O. A. (2008). Peroxodisulphate reduction as a novel probe for the study of platinum single crystal/solution interphases. Journal of Electroanalytical Chemistry, 612(2), 269-276. doi:10.1016/j.jelechem.2007.10.009
Garcia-Araez, N., Climent, V., & Feliu, J. (2009). Potential-Dependent Water Orientation on Pt(111), Pt(100), and Pt(110), As Inferred from Laser-Pulsed Experiments. Electrostatic and Chemical Effects. The Journal of Physical Chemistry C, 113(21), 9290-9304. doi:10.1021/jp900792q
Martínez-Hincapié, R., Sebastián-Pascual, P., Climent, V., & Feliu, J. M. (2017). Investigating interfacial parameters with platinum single crystal electrodes. Russian Journal of Electrochemistry, 53(3), 227-236. doi:10.1134/s1023193517030107
Gómez, R., Climent, V., Feliu, J. M., & Weaver, M. J. (1999). Dependence of the Potential of Zero Charge of Stepped Platinum (111) Electrodes on the Oriented Step-Edge Density: Electrochemical Implications and Comparison with Work Function Behavior. The Journal of Physical Chemistry B, 104(3), 597-605. doi:10.1021/jp992870c
Silva, F., Sottomayor, M. J., & Hamelin, A. (1990). The temperature coefficient of the potential of zero charge of the gold single-crystal electrode/aqueous solution interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 294(1-2), 239-251. doi:10.1016/0022-0728(90)87148-d
Shinagawa, T., Garcia-Esparza, A. T., & Takanabe, K. (2015). Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 5(1). doi:10.1038/srep13801
Dubouis, N., & Grimaud, A. (2019). The hydrogen evolution reaction: from material to interfacial descriptors. Chemical Science, 10(40), 9165-9181. doi:10.1039/c9sc03831k
Cheng, T., Wang, L., Merinov, B. V., & Goddard, W. A. (2018). Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH. Journal of the American Chemical Society, 140(25), 7787-7790. doi:10.1021/jacs.8b04006
Wagner, F. T., & Moylan, T. E. (1987). Identification of surface hydronium: Coadsorption of hydrogen fluoride and water on platinum (111). Surface Science, 182(1-2), 125-149. doi:10.1016/0039-6028(87)90092-6
Huang, J., Li, P., & Chen, S. (2019). Quantitative Understanding of the Sluggish Kinetics of Hydrogen Reactions in Alkaline Media Based on a Microscopic Hamiltonian Model for the Volmer Step. The Journal of Physical Chemistry C, 123(28), 17325-17334. doi:10.1021/acs.jpcc.9b03639
Schouten, K. J. P., van der Niet, M. J. T. C., & Koper, M. T. M. (2010). Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media. Physical Chemistry Chemical Physics, 12(46), 15217. doi:10.1039/c0cp00104j
Tarasevich, M. R., & Korchagin, O. V. (2013). Electrocatalysis and pH (a review). Russian Journal of Electrochemistry, 49(7), 600-618. doi:10.1134/s102319351307015x
Zhu, X., & Huang, J. (2019). Modeling Electrocatalytic Oxidation of Formic Acid at Platinum. Journal of The Electrochemical Society, 167(1), 013515. doi:10.1149/2.0152001jes
[-]