- -

Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor

Mostrar el registro completo del ítem

Ramirez-Priego, P.; Estévez, M.; Díaz-Luisravelo, HJ.; Manclus Ciscar, JJ.; Montoya, Á.; Lechuga, LM. (2021). Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor. Analytica Chimica Acta. 1152:1-9. https://doi.org/10.1016/j.aca.2021.338276

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167735

Ficheros en el ítem

Metadatos del ítem

Título: Real-time monitoring of fenitrothion in water samples using a silicon nanophotonic biosensor
Autor: Ramirez-Priego, Patricia Estévez, M.-Carmen Díaz-Luisravelo, Heriberto J. Manclus Ciscar, Juan José Montoya, Ángel Lechuga, Laura M.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Due to the large quantities of pesticides extensively used and their impact on the environment and human health, a prompt and reliable sensing technique could constitute an excellent tool for in-situ monitoring. With ...[+]
Palabras clave: Silicon photonics , Optical sensor , Environmental monitoring , Pesticide , Organophosphate , Fenitrothion , Label-free
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Analytica Chimica Acta. (issn: 0003-2670 )
DOI: 10.1016/j.aca.2021.338276
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.aca.2021.338276
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//SEV-2017-0706/
info:eu-repo/grantAgreement/AEI//RTC-2017-6222-5/ES/Desarrollo de inmunoreactivos y biosensores para el análisis de trazadores en yacimientos petrolíferos (DIONISIOS)/
Agradecimientos:
This work received financial support from DIONISOS Project (Retos Colaboracion RTC-2017-6222-5). The ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the Severo Ochoa Centres of ...[+]
Tipo: Artículo

References

Sánchez-Santed, F., Colomina, M. T., & Herrero Hernández, E. (2016). Organophosphate pesticide exposure and neurodegeneration. Cortex, 74, 417-426. doi:10.1016/j.cortex.2015.10.003

Chough, S. H., Mulchandani, A., Mulchandani, P., Chen, W., Wang, J., & Rogers, K. R. (2002). Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. Electroanalysis, 14(4), 273-276. doi:10.1002/1521-4109(200202)14:4<273::aid-elan273>3.0.co;2-5

Richardson, J. R., Fitsanakis, V., Westerink, R. H. S., & Kanthasamy, A. G. (2019). Neurotoxicity of pesticides. Acta Neuropathologica, 138(3), 343-362. doi:10.1007/s00401-019-02033-9 [+]
Sánchez-Santed, F., Colomina, M. T., & Herrero Hernández, E. (2016). Organophosphate pesticide exposure and neurodegeneration. Cortex, 74, 417-426. doi:10.1016/j.cortex.2015.10.003

Chough, S. H., Mulchandani, A., Mulchandani, P., Chen, W., Wang, J., & Rogers, K. R. (2002). Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. Electroanalysis, 14(4), 273-276. doi:10.1002/1521-4109(200202)14:4<273::aid-elan273>3.0.co;2-5

Richardson, J. R., Fitsanakis, V., Westerink, R. H. S., & Kanthasamy, A. G. (2019). Neurotoxicity of pesticides. Acta Neuropathologica, 138(3), 343-362. doi:10.1007/s00401-019-02033-9

Giordano, G., Afsharinejad, Z., Guizzetti, M., Vitalone, A., Kavanagh, T. J., & Costa, L. G. (2007). Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicology and Applied Pharmacology, 219(2-3), 181-189. doi:10.1016/j.taap.2006.09.016

Çakir, Ş., & Sarikaya, R. (2005). Genotoxicity testing of some organophosphate insecticides in the Drosophila wing spot test. Food and Chemical Toxicology, 43(3), 443-450. doi:10.1016/j.fct.2004.11.010

Rahman, M. F., Mahboob, M., Danadevi, K., Saleha Banu, B., & Grover, P. (2002). Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 516(1-2), 139-147. doi:10.1016/s1383-5718(02)00033-5

Yeh, S.-P., Sung, T.-G., Chang, C.-C., Cheng, W., & Kuo, C.-M. (2005). Effects of an organophosphorus insecticide, trichlorfon, on hematological parameters of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquaculture, 243(1-4), 383-392. doi:10.1016/j.aquaculture.2004.10.017

Smith, A. G., & Gangolli, S. D. (2002). Organochlorine chemicals in seafood: occurrence and health concerns. Food and Chemical Toxicology, 40(6), 767-779. doi:10.1016/s0278-6915(02)00046-7

Kumar, P., Kim, K.-H., & Deep, A. (2015). Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosensors and Bioelectronics, 70, 469-481. doi:10.1016/j.bios.2015.03.066

Schellin, M., Hauser, B., & Popp, P. (2004). Determination of organophosphorus pesticides using membrane-assisted solvent extraction combined with large volume injection–gas chromatography–mass spectrometric detection. Journal of Chromatography A, 1040(2), 251-258. doi:10.1016/j.chroma.2004.04.006

Sánchez, M. E., Méndez, R., Gómez, X., & Martín‐Villacorta, J. (2003). Determination of Diazinon and Fenitrothion in Environmental Water and Soil Samples by HPLC. Journal of Liquid Chromatography & Related Technologies, 26(3), 483-497. doi:10.1081/jlc-120017184

Sherma, J. (1993). Pesticides. Analytical Chemistry, 65(12), 40-54. doi:10.1021/ac00060a004

Grigoryan, H., Li, B., Xue, W., Grigoryan, M., Schopfer, L. M., & Lockridge, O. (2009). Mass spectral characterization of organophosphate-labeled lysine in peptides. Analytical Biochemistry, 394(1), 92-100. doi:10.1016/j.ab.2009.07.008

Thompson, C. M., Prins, J. M., & George, K. M. (2010). Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts. Environmental Health Perspectives, 118(1), 11-19. doi:10.1289/ehp.0900824

Wang, J., Chatrathi, M. P., Mulchandani, A., & Chen, W. (2001). Capillary Electrophoresis Microchips for Separation and Detection of Organophosphate Nerve Agents. Analytical Chemistry, 73(8), 1804-1808. doi:10.1021/ac001424e

Watanabe, E., Kanzaki, Y., Tokumoto, H., Hoshino, R., Kubo, H., & Nakazawa, H. (2001). Enzyme-Linked Immunosorbent Assay Based on a Polyclonal Antibody for the Detection of the Insecticide Fenitrothion. Evaluation of Antiserum and Application to the Analysis of Water Samples. Journal of Agricultural and Food Chemistry, 50(1), 53-58. doi:10.1021/jf0108359

Hua, X., Yang, J., Wang, L., Fang, Q., Zhang, G., & Liu, F. (2012). Development of an Enzyme Linked Immunosorbent Assay and an Immunochromatographic Assay for Detection of Organophosphorus Pesticides in Different Agricultural Products. PLoS ONE, 7(12), e53099. doi:10.1371/journal.pone.0053099

Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791t

Mane, P. C., Shinde, M. D., Varma, S., Chaudhari, B. P., Fatehmulla, A., Shahabuddin, M., … Chaudhari, R. D. (2020). Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Scientific Reports, 10(1). doi:10.1038/s41598-020-61130-y

Ensafi, A. A., Rezaloo, F., & Rezaei, B. (2017). Electrochemical Determination of Fenitrothion Organophosphorus Pesticide Using Polyzincon Modified-glassy Carbon Electrode. Electroanalysis, 29(12), 2839-2846. doi:10.1002/elan.201700406

Qi, P., Wang, J., Wang, X., Wang, X., Wang, Z., Xu, H., … Wang, X. (2018). Sensitive determination of fenitrothion in water samples based on an electrochemical sensor layered reduced graphene oxide, molybdenum sulfide (MoS2)-Au and zirconia films. Electrochimica Acta, 292, 667-675. doi:10.1016/j.electacta.2018.09.187

Kant, R. (2019). Surface plasmon resonance based fiber–optic nanosensor for the pesticide fenitrothion utilizing Ta2O5 nanostructures sequestered onto a reduced graphene oxide matrix. Microchimica Acta, 187(1). doi:10.1007/s00604-019-4002-8

Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734

Fernández Gavela, A., Grajales García, D., Ramirez, J., & Lechuga, L. (2016). Last Advances in Silicon-Based Optical Biosensors. Sensors, 16(3), 285. doi:10.3390/s16030285

Maldonado, J., Estévez, M.-C., Fernández-Gavela, A., González-López, J. J., González-Guerrero, A. B., & Lechuga, L. M. (2020). Label-free detection of nosocomial bacteria using a nanophotonic interferometric biosensor. The Analyst, 145(2), 497-506. doi:10.1039/c9an01485c

Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162

Maldonado, J., González-Guerrero, A. B., Domínguez, C., & Lechuga, L. M. (2016). Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients. Biosensors and Bioelectronics, 85, 310-316. doi:10.1016/j.bios.2016.04.095

González-Guerrero, A. B., Maldonado, J., Dante, S., Grajales, D., & Lechuga, L. M. (2016). Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor. Journal of Biophotonics, 10(1), 61-67. doi:10.1002/jbio.201600154

Chocarro-Ruiz, B., Herranz, S., Fernández Gavela, A., Sanchís, J., Farré, M., Marco, M. P., & Lechuga, L. M. (2018). Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater. Biosensors and Bioelectronics, 117, 47-52. doi:10.1016/j.bios.2018.05.044

Chocarro-Ruiz, B., Pérez-Carvajal, J., Avci, C., Calvo-Lozano, O., Alonso, M. I., Maspoch, D., & Lechuga, L. M. (2018). A CO2optical sensor based on self-assembled metal–organic framework nanoparticles. Journal of Materials Chemistry A, 6(27), 13171-13177. doi:10.1039/c8ta02767f

Manclús, J. J., Primo, J., & Montoya, A. (1996). Development of Enzyme-Linked Immunosorbent Assays for the Insecticide Chlorpyrifos. 1. Monoclonal Antibody Production and Immunoassay Design. Journal of Agricultural and Food Chemistry, 44(12), 4052-4062. doi:10.1021/jf960144q

Dante, S., Duval, D., Fariña, D., González-Guerrero, A. B., & Lechuga, L. M. (2015). Linear readout of integrated interferometric biosensors using a periodic wavelength modulation. Laser & Photonics Reviews, 9(2), 248-255. doi:10.1002/lpor.201400216

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem