- -

Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: comparison to diesel-gasoline calibration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: comparison to diesel-gasoline calibration

Mostrar el registro completo del ítem

Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Lago-Sari, R. (2020). Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: comparison to diesel-gasoline calibration. Energy Conversion and Management. 216:1-16. https://doi.org/10.1016/j.enconman.2020.112953

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167737

Ficheros en el ítem

Metadatos del ítem

Título: Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: comparison to diesel-gasoline calibration
Autor: Benajes, Jesús García Martínez, Antonio Monsalve-Serrano, Javier Lago-Sari, Rafael
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] From previous results in a single-cylinder engine platform, it can be concluded that the dual-mode dual-fuel (DMDF) concept can be a potential solution to overcome the major constraints found with other single-fuel ...[+]
Palabras clave: Reactivity controlled compression ignition , Dual-fuel combustion , Oximethylene ether , EURO VI emissions , Synthetic fuels
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Energy Conversion and Management. (issn: 0196-8904 )
DOI: 10.1016/j.enconman.2020.112953
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.enconman.2020.112953
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
info:eu-repo/grantAgreement/UPV//SP20180148/
info:eu-repo/grantAgreement/AEI//PRE2018-085044/
Agradecimientos:
The authors thanks ARAMCO Overseas Company and VOLVO Group Trucks Technology for supporting this research. The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this ...[+]
Tipo: Artículo

References

Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, et al. IPCC, 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

European environment agency. GHG emissions by sector in the EU-28, 1990-2016. Available at <https://www.eea.europa.eu/data-and-maps/daviz/ghg-emissions-by-sector-in#tab-chart_2>.

European parliament. CO2 emissions from cars: facts and figures (infographics). Available at <https://www.europarl.europa.eu/news/en/headlines/society/ 20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics>. [+]
Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, et al. IPCC, 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

European environment agency. GHG emissions by sector in the EU-28, 1990-2016. Available at <https://www.eea.europa.eu/data-and-maps/daviz/ghg-emissions-by-sector-in#tab-chart_2>.

European parliament. CO2 emissions from cars: facts and figures (infographics). Available at <https://www.europarl.europa.eu/news/en/headlines/society/ 20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics>.

United States Environmental Protection Agency- EPA. Smog, Soot, and Other Air Pollution from Transportation. Available at:<https://www.epa.gov/transportation-air-pollution-and-climate-change/smog-soot-and-local-air-pollution>.

European environment agency. Emissions of air pollutants from transport. Available at<https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-air-pollutants-8/transport-emissions-of-air-pollutants-8>.

Official Journal of the European Union. Regulation (EC) No 595/2009 of the European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC, OJ L 188, 18.7.2009, p. 1–13.

García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043

Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016

Russell, A., & Epling, W. S. (2011). Diesel Oxidation Catalysts. Catalysis Reviews, 53(4), 337-423. doi:10.1080/01614940.2011.596429

Piqueras, P., García, A., Monsalve-Serrano, J., & Ruiz, M. J. (2019). Performance of a diesel oxidation catalyst under diesel-gasoline reactivity controlled compression ignition combustion conditions. Energy Conversion and Management, 196, 18-31. doi:10.1016/j.enconman.2019.05.111

Serrano JR, Bermudez V, Piqueras P, Angiolini E. Application of Pre-DPF Water Injection Technique for Pressure Drop Limitation. SAE Technical Paper 2015-01-0985. DOI:10.4271/2015-01-0985.

Ettireddy PR, Kotrba A, Spinks T, Boningari T, Smirniotis P. Development of Low Temperature Selective Catalytic Reduction (SCR) Catalysts for Future Emissions Regulations. SAE Technical Paper 2014-01-1520. DOI:10.4271/2014-01-1520.

Dallmann T., Posada F., Bandivadekar A. Costs of Emission Reduction Technologies for Diesel Engines Used in Non-Road Vehicles and Equipment. ICCT, Working paper 2018-10, July 2018.

Nishiyama H, Tanaka Y, Adachi T, Kawamura S, Daisho Y, Suzuki H, Yamaguchi K. A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System. SAE Technical Papers) 2015-09-0. DOI:10.4271/2015-01-2014.

Singh N, Rutland C, Foster D, Narayanaswamy K, He Y. Investigation into Different DPF Regeneration Strategies Based on Fuel Economy Using Integrated System Simulation. SAE Technical Paper 2009-01-1275. DOI:10.4271/2009-01-1275.

Official Journal of the European Union. REGULATION (EU) 2019/1242 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 June 2019 setting CO2 emission performance standards for new heavy-duty vehicles and amending Regulations (EC) No 595/2009 and (EU) 2018/956 of the European Parliament and of the Council and Council Directive 96/53/EC.

García Valladolid, P., Tunestål, P., Monsalve-Serrano, J., García, A., & Hyvönen, J. (2017). Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine. Energy Conversion and Management, 149, 192-205. doi:10.1016/j.enconman.2017.07.023

Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8-28. doi:10.1002/er.1464

Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082

Martins M, Fischer I, Gusberti F, Sari R. et al., “HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine,” SAE Technical Paper 2017-01-0733, 2017, DOI:10.4271/2017-01-0733.

Yousefi, A., Gharehghani, A., & Birouk, M. (2015). Comparison study on combustion characteristics and emissions of a homogeneous charge compression ignition (HCCI) engine with and without pre-combustion chamber. Energy Conversion and Management, 100, 232-241. doi:10.1016/j.enconman.2015.05.024

López, J. J., García-Oliver, J. M., García, A., & Domenech, V. (2014). Gasoline effects on spray characteristics, mixing and auto-ignition processes in a CI engine under Partially Premixed Combustion conditions. Applied Thermal Engineering, 70(1), 996-1006. doi:10.1016/j.applthermaleng.2014.06.027

Yang, J., Ji, C., Wang, S., Wang, D., Shi, C., Ma, Z., & Zhang, B. (2018). Numerical study of hydrogen direct injection strategy on mixture formation and combustion process in a partially premixed gasoline Wankel rotary engine. Energy Conversion and Management, 176, 184-193. doi:10.1016/j.enconman.2018.09.008

Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144

Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003

Park, H., Shim, E., & Bae, C. (2019). Expansion of low-load operating range by mixture stratification in a natural gas-diesel dual-fuel premixed charge compression ignition engine. Energy Conversion and Management, 194, 186-198. doi:10.1016/j.enconman.2019.04.085

Inagaki K, Fuyuto T, Nishikawa K, Nakakita K, Sakata I. Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability. SAE Technical Paper 2006-01-0028, 2006.

Kokjohn S L, Hanson R M, Splitter D A, Reitz R D. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion, International Journal of Engine Research, 2011. Volume 12, June 2011, Pages 209-226.

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015

Molina, S., García, A., Monsalve-Serrano, J., & Estepa, D. (2018). Miller cycle for improved efficiency, load range and emissions in a heavy-duty engine running under reactivity controlled compression ignition combustion. Applied Thermal Engineering, 136, 161-168. doi:10.1016/j.applthermaleng.2018.02.106

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010

Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2016). An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management, 123, 381-391. doi:10.1016/j.enconman.2016.06.059

García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Fuel sensitivity effects on dual-mode dual-fuel combustion operation for different octane numbers. Energy Conversion and Management, 201, 112137. doi:10.1016/j.enconman.2019.112137

García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Octane number influence on combustion and performance parameters in a Dual-Mode Dual-Fuel engine. Fuel, 258, 116140. doi:10.1016/j.fuel.2019.116140

García, A., Monsalve-Serrano, J., Villalta, D., Lago Sari, R., Gordillo Zavaleta, V., & Gaillard, P. (2019). Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 253, 113622. doi:10.1016/j.apenergy.2019.113622

García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034

Burre, J., Bongartz, D., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME3–5. Industrial & Engineering Chemistry Research, 58(14), 5567-5578. doi:10.1021/acs.iecr.8b05577

Omari A, Heuser B, Pischinger S. Potential of oxymethylenether-diesel blends for ultra-low emission engines, Fuel, Volume 209, 2017, pages 232-237, ISSN 0016-2361, DOI:10.1016/j.fuel.2017.07.107.

Deutz, S., Bongartz, D., Heuser, B., Kätelhön, A., Schulze Langenhorst, L., Omari, A., … Bardow, A. (2018). Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy & Environmental Science, 11(2), 331-343. doi:10.1039/c7ee01657c

Burre J, Bongartz D, Mitsos, A. Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME3–5 Industrial & Engineering Chemistry Research, March 2019, 58, 5567–5578, DOI: 10.1021/acs.iecr.8b05577.

Held M, TÖnges Y, Pélerin D, Hartl M, Wachtmeister G, Burger J. On the energetic efficiency of producing polyoxymethylene dimethyl ethers from CO2 using electrical energy. Energy and environmental Science, January 2019, pages 1019–1034.

Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014

AVL manufacturer manual. Smoke value measurement with the filter-papermethod. Application notes. June 2005 AT1007E, Rev. 02. Web:<https://www.avl.com/documents/10138/885893/Application+Notes>.

Macian V, Payri R, Garcia A, Bardi M. Experimental Evaluation of the Best Approach for Diesel Spray Images Segmentation. Experimental Techniques, Volume36, December 2012, Pages 26-34.

Benajes J, García A, Monsalve-Serrano J, Sari R. Potential of RCCI series hybrid vehicle architecture to meet the future CO2 targets with low engine-out emissions. Applied Sciences (Switzerland), 8(9), 2018, 1472.

Damodharana D, Sathiyagnanamb AP, Ranac Kumard DB, Saravanand S. Combined influence of injection timing and EGR on combustion, performance and emissions of DI diesel engine fueled with neat waste plastic oil. Energy Conversion and Management, 8(9), 2018, 1472.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem