- -

Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: comparison to diesel-gasoline calibration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: comparison to diesel-gasoline calibration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benajes, Jesús es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Lago-Sari, Rafael es_ES
dc.date.accessioned 2021-06-10T03:31:34Z
dc.date.available 2021-06-10T03:31:34Z
dc.date.issued 2020-07-15 es_ES
dc.identifier.issn 0196-8904 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167737
dc.description.abstract [EN] From previous results in a single-cylinder engine platform, it can be concluded that the dual-mode dual-fuel (DMDF) concept can be a potential solution to overcome the major constraints found with other single-fuel low temperature combustion modes. To extend these findings to a real application, this work evaluates the potential of the diesel-gasoline DMDF concept on a multi-cylinder 8L engine in terms of performance and emissions. To do this, a full engine calibration map was obtained following a specific methodology. The emissions results show that diesel-gasoline DMDF allows to achieve EURO VI NOx and soot emissions in a great portion of the engine map. Nonetheless, the levels of these pollutant at high load conditions exceed the EURO VI limits by far due to the need of implementing a diffusive combustion strategy with high EGR levels to avoid excessive in-cylinder pressure gradients. To mitigate this issue, the use of Oxymethylene ether (OMEx) instead of diesel fuel is proposed. A dedicated engine calibration was developed for the OMEx-gasoline DMDF concept following the same methodology. The results show that the oxygen content in the OMEx molecule allows to achieve a fully EUVI compliant engine calibration in terms of NOx with engine-out soot levels lower than 0.01 g/kWh. Moreover, due to the lower stoichiometric air-fuel ratio with this fuel, the air management system requirements are lower, reducing the pumping losses and increasing the brake thermal efficiency in most of the calibration map. es_ES
dc.description.sponsorship The authors thanks ARAMCO Overseas Company and VOLVO Group Trucks Technology for supporting this research. The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA201787694-R). The authors also acknowledge the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (SP20180148). The author R. Sari acknowledges the financial support from the Spanish ministry of science innovation and universities under the grant "Ayudas para contratos predoctorales para la formacion de doctores"(PRE2018085043). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Conversion and Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Reactivity controlled compression ignition es_ES
dc.subject Dual-fuel combustion es_ES
dc.subject Oximethylene ether es_ES
dc.subject EURO VI emissions es_ES
dc.subject Synthetic fuels es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: comparison to diesel-gasoline calibration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enconman.2020.112953 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180148/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2018-085044/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Lago-Sari, R. (2020). Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: comparison to diesel-gasoline calibration. Energy Conversion and Management. 216:1-16. https://doi.org/10.1016/j.enconman.2020.112953 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enconman.2020.112953 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 216 es_ES
dc.relation.pasarela S\412524 es_ES
dc.contributor.funder ARAMCO Overseas Company es_ES
dc.contributor.funder Volvo Group Trucks Technology es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, et al. IPCC, 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. es_ES
dc.description.references European environment agency. GHG emissions by sector in the EU-28, 1990-2016. Available at <https://www.eea.europa.eu/data-and-maps/daviz/ghg-emissions-by-sector-in#tab-chart_2>. es_ES
dc.description.references European parliament. CO2 emissions from cars: facts and figures (infographics). Available at <https://www.europarl.europa.eu/news/en/headlines/society/ 20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics>. es_ES
dc.description.references United States Environmental Protection Agency- EPA. Smog, Soot, and Other Air Pollution from Transportation. Available at:<https://www.epa.gov/transportation-air-pollution-and-climate-change/smog-soot-and-local-air-pollution>. es_ES
dc.description.references European environment agency. Emissions of air pollutants from transport. Available at<https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-air-pollutants-8/transport-emissions-of-air-pollutants-8>. es_ES
dc.description.references Official Journal of the European Union. Regulation (EC) No 595/2009 of the European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC, OJ L 188, 18.7.2009, p. 1–13. es_ES
dc.description.references García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016 es_ES
dc.description.references Russell, A., & Epling, W. S. (2011). Diesel Oxidation Catalysts. Catalysis Reviews, 53(4), 337-423. doi:10.1080/01614940.2011.596429 es_ES
dc.description.references Piqueras, P., García, A., Monsalve-Serrano, J., & Ruiz, M. J. (2019). Performance of a diesel oxidation catalyst under diesel-gasoline reactivity controlled compression ignition combustion conditions. Energy Conversion and Management, 196, 18-31. doi:10.1016/j.enconman.2019.05.111 es_ES
dc.description.references Serrano JR, Bermudez V, Piqueras P, Angiolini E. Application of Pre-DPF Water Injection Technique for Pressure Drop Limitation. SAE Technical Paper 2015-01-0985. DOI:10.4271/2015-01-0985. es_ES
dc.description.references Ettireddy PR, Kotrba A, Spinks T, Boningari T, Smirniotis P. Development of Low Temperature Selective Catalytic Reduction (SCR) Catalysts for Future Emissions Regulations. SAE Technical Paper 2014-01-1520. DOI:10.4271/2014-01-1520. es_ES
dc.description.references Dallmann T., Posada F., Bandivadekar A. Costs of Emission Reduction Technologies for Diesel Engines Used in Non-Road Vehicles and Equipment. ICCT, Working paper 2018-10, July 2018. es_ES
dc.description.references Nishiyama H, Tanaka Y, Adachi T, Kawamura S, Daisho Y, Suzuki H, Yamaguchi K. A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System. SAE Technical Papers) 2015-09-0. DOI:10.4271/2015-01-2014. es_ES
dc.description.references Singh N, Rutland C, Foster D, Narayanaswamy K, He Y. Investigation into Different DPF Regeneration Strategies Based on Fuel Economy Using Integrated System Simulation. SAE Technical Paper 2009-01-1275. DOI:10.4271/2009-01-1275. es_ES
dc.description.references Official Journal of the European Union. REGULATION (EU) 2019/1242 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 June 2019 setting CO2 emission performance standards for new heavy-duty vehicles and amending Regulations (EC) No 595/2009 and (EU) 2018/956 of the European Parliament and of the Council and Council Directive 96/53/EC. es_ES
dc.description.references García Valladolid, P., Tunestål, P., Monsalve-Serrano, J., García, A., & Hyvönen, J. (2017). Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine. Energy Conversion and Management, 149, 192-205. doi:10.1016/j.enconman.2017.07.023 es_ES
dc.description.references Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8-28. doi:10.1002/er.1464 es_ES
dc.description.references Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082 es_ES
dc.description.references Martins M, Fischer I, Gusberti F, Sari R. et al., “HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine,” SAE Technical Paper 2017-01-0733, 2017, DOI:10.4271/2017-01-0733. es_ES
dc.description.references Yousefi, A., Gharehghani, A., & Birouk, M. (2015). Comparison study on combustion characteristics and emissions of a homogeneous charge compression ignition (HCCI) engine with and without pre-combustion chamber. Energy Conversion and Management, 100, 232-241. doi:10.1016/j.enconman.2015.05.024 es_ES
dc.description.references López, J. J., García-Oliver, J. M., García, A., & Domenech, V. (2014). Gasoline effects on spray characteristics, mixing and auto-ignition processes in a CI engine under Partially Premixed Combustion conditions. Applied Thermal Engineering, 70(1), 996-1006. doi:10.1016/j.applthermaleng.2014.06.027 es_ES
dc.description.references Yang, J., Ji, C., Wang, S., Wang, D., Shi, C., Ma, Z., & Zhang, B. (2018). Numerical study of hydrogen direct injection strategy on mixture formation and combustion process in a partially premixed gasoline Wankel rotary engine. Energy Conversion and Management, 176, 184-193. doi:10.1016/j.enconman.2018.09.008 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 es_ES
dc.description.references Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 es_ES
dc.description.references Park, H., Shim, E., & Bae, C. (2019). Expansion of low-load operating range by mixture stratification in a natural gas-diesel dual-fuel premixed charge compression ignition engine. Energy Conversion and Management, 194, 186-198. doi:10.1016/j.enconman.2019.04.085 es_ES
dc.description.references Inagaki K, Fuyuto T, Nishikawa K, Nakakita K, Sakata I. Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability. SAE Technical Paper 2006-01-0028, 2006. es_ES
dc.description.references Kokjohn S L, Hanson R M, Splitter D A, Reitz R D. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion, International Journal of Engine Research, 2011. Volume 12, June 2011, Pages 209-226. es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 es_ES
dc.description.references Molina, S., García, A., Monsalve-Serrano, J., & Estepa, D. (2018). Miller cycle for improved efficiency, load range and emissions in a heavy-duty engine running under reactivity controlled compression ignition combustion. Applied Thermal Engineering, 136, 161-168. doi:10.1016/j.applthermaleng.2018.02.106 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2016). An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management, 123, 381-391. doi:10.1016/j.enconman.2016.06.059 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Fuel sensitivity effects on dual-mode dual-fuel combustion operation for different octane numbers. Energy Conversion and Management, 201, 112137. doi:10.1016/j.enconman.2019.112137 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Octane number influence on combustion and performance parameters in a Dual-Mode Dual-Fuel engine. Fuel, 258, 116140. doi:10.1016/j.fuel.2019.116140 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., Lago Sari, R., Gordillo Zavaleta, V., & Gaillard, P. (2019). Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 253, 113622. doi:10.1016/j.apenergy.2019.113622 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034 es_ES
dc.description.references Burre, J., Bongartz, D., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME3–5. Industrial & Engineering Chemistry Research, 58(14), 5567-5578. doi:10.1021/acs.iecr.8b05577 es_ES
dc.description.references Omari A, Heuser B, Pischinger S. Potential of oxymethylenether-diesel blends for ultra-low emission engines, Fuel, Volume 209, 2017, pages 232-237, ISSN 0016-2361, DOI:10.1016/j.fuel.2017.07.107. es_ES
dc.description.references Deutz, S., Bongartz, D., Heuser, B., Kätelhön, A., Schulze Langenhorst, L., Omari, A., … Bardow, A. (2018). Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy & Environmental Science, 11(2), 331-343. doi:10.1039/c7ee01657c es_ES
dc.description.references Burre J, Bongartz D, Mitsos, A. Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME3–5 Industrial & Engineering Chemistry Research, March 2019, 58, 5567–5578, DOI: 10.1021/acs.iecr.8b05577. es_ES
dc.description.references Held M, TÖnges Y, Pélerin D, Hartl M, Wachtmeister G, Burger J. On the energetic efficiency of producing polyoxymethylene dimethyl ethers from CO2 using electrical energy. Energy and environmental Science, January 2019, pages 1019–1034. es_ES
dc.description.references Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014 es_ES
dc.description.references AVL manufacturer manual. Smoke value measurement with the filter-papermethod. Application notes. June 2005 AT1007E, Rev. 02. Web:<https://www.avl.com/documents/10138/885893/Application+Notes>. es_ES
dc.description.references Macian V, Payri R, Garcia A, Bardi M. Experimental Evaluation of the Best Approach for Diesel Spray Images Segmentation. Experimental Techniques, Volume36, December 2012, Pages 26-34. es_ES
dc.description.references Benajes J, García A, Monsalve-Serrano J, Sari R. Potential of RCCI series hybrid vehicle architecture to meet the future CO2 targets with low engine-out emissions. Applied Sciences (Switzerland), 8(9), 2018, 1472. es_ES
dc.description.references Damodharana D, Sathiyagnanamb AP, Ranac Kumard DB, Saravanand S. Combined influence of injection timing and EGR on combustion, performance and emissions of DI diesel engine fueled with neat waste plastic oil. Energy Conversion and Management, 8(9), 2018, 1472. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem