- -

Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine

Show simple item record

Files in this item

dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Martínez-Boggio, Santiago Daniel es_ES
dc.contributor.author Wittek, Karsten es_ES
dc.date.accessioned 2021-06-10T03:31:48Z
dc.date.available 2021-06-10T03:31:48Z
dc.date.issued 2020-03-15 es_ES
dc.identifier.issn 0360-5442 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167739
dc.description.abstract [EN] After the diesel emissions scandal, also known as Dieselgate, Direct Injection Spark-Ignited (DISI) internal combustion engines (ICE) appears as the most promising alternative to mitigate the harmful tailpipe emissions from passenger cars. In spite of that, the current ICE technologies are not enough to achieve the fuel consumption/CO2 emissions targets set by the new transportation legislation (4.1 L-gasoline/100 km, 95 gCO(2)/km for 2021). In this complex scenario, the electrification of the powertrain using high efficiency electric motors and battery package together with sophisticated DISI engines appears as potential solution to meet these requirements. The aim of this work is to study the fuel consumption and pollutant emissions in transient conditions from a passenger car equipped with a variable compression ratio (VCR) DISI engine and electrified powertrain technologies. The vehicle behavior was simulated by means of a 0D GT-Suite model fed by experimental results obtained in an engine test bench. Mild hybrid electric vehicle (MHEV) and full hybrid electric vehicle (FHEV) architectures using a VCR DISI engine were studied. Moreover, an optimization methodology is presented to select the best vehicle configuration in terms of hardware and control strategies by means of a design of experiments (DoE). The results show that VCR allows a fuel improvement of 3% with respect to the conventional DISI fixed CR along the worldwide harmonized light vehicles test cycles (WLTC). The benefits found when combining the VCR technology with hybrid powertrains are even higher. In this sense, the fuel improvements were higher as the electrification levels increased, with 8% for MHEV-VCR and around 20% for FHEV-VCR. In terms of emissions, the two clear benefits with FHEV-VCR were the reduction of particle number (PN) and unburned hydrocarbons (HC) of around 60% and 15%, respectively, as compared to the conventional DISI. es_ES
dc.description.sponsorship The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (SP20180148). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Hybrid powertrain es_ES
dc.subject Downsized combustion engines es_ES
dc.subject Variable compression ratio es_ES
dc.subject Emissions regulations es_ES
dc.subject Driving cycles es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.energy.2020.117039 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180148/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation García Martínez, A.; Monsalve-Serrano, J.; Martínez-Boggio, SD.; Wittek, K. (2020). Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy. 195:1-19. https://doi.org/10.1016/j.energy.2020.117039 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.energy.2020.117039 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 195 es_ES
dc.relation.pasarela S\402286 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references González, R. M., Marrero, G. A., Rodríguez-López, J., & Marrero, Á. S. (2019). Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach. Energy Policy, 129, 1271-1281. doi:10.1016/j.enpol.2019.03.031 es_ES
dc.description.references Dua, R., White, K., & Lindland, R. (2019). Understanding potential for battery electric vehicle adoption using large-scale consumer profile data. Energy Reports, 5, 515-524. doi:10.1016/j.egyr.2019.04.013 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036 es_ES
dc.description.references Lanzarotto, D., Marchesoni, M., Passalacqua, M., Prato, A. P., & Repetto, M. (2018). Overview of different hybrid vehicle architectures. IFAC-PapersOnLine, 51(9), 218-222. doi:10.1016/j.ifacol.2018.07.036 es_ES
dc.description.references Pasini, G., Lutzemberger, G., Frigo, S., Marelli, S., Ceraolo, M., Gentili, R., & Capobianco, M. (2016). Evaluation of an electric turbo compound system for SI engines: A numerical approach. Applied Energy, 162, 527-540. doi:10.1016/j.apenergy.2015.10.143 es_ES
dc.description.references Zhou, X., Qin, D., & Hu, J. (2017). Multi-objective optimization design and performance evaluation for plug-in hybrid electric vehicle powertrains. Applied Energy, 208, 1608-1625. doi:10.1016/j.apenergy.2017.08.201 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2020). Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering, 164, 114430. doi:10.1016/j.applthermaleng.2019.114430 es_ES
dc.description.references Asghar, M., Bhatti, A. I., Ahmed, Q., & Murtaza, G. (2018). Energy Management Strategy for Atkinson Cycle Engine Based Parallel Hybrid Electric Vehicle. IEEE Access, 6, 28008-28018. doi:10.1109/access.2018.2835395 es_ES
dc.description.references Solouk, A., Shakiba-herfeh, M., & Shahbakhti, M. (2017). Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine. SAE International Journal of Alternative Powertrains, 6(1), 54-67. doi:10.4271/2017-01-1153 es_ES
dc.description.references Wang, C., Zhang, F., Wang, E., Yu, C., Gao, H., Liu, B., … Zhao, C. (2019). Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection. Applied Energy, 242, 248-259. doi:10.1016/j.apenergy.2019.03.123 es_ES
dc.description.references Wolfgang, S., Sorger, H., Loesch, S., Unzeitig, W., Huettner, T., & Fuerhapter, A. (2017). The 2-Step VCR Conrod System - Modular System for High Efficiency and Reduced CO2. SAE Technical Paper Series. doi:10.4271/2017-01-0634 es_ES
dc.description.references Wittek, K., Geiger, F., Andert, J., Martins, M., Cogo, V., & Lanzanova, T. (2019). Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, 183, 753-763. doi:10.1016/j.enconman.2019.01.037 es_ES
dc.description.references Kleeberg, H., Tomazic, D., Dohmen, J., Wittek, K., & Balazs, A. (2013). Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System. SAE Technical Paper Series. doi:10.4271/2013-01-0288 es_ES
dc.description.references Teodosio, L., De Bellis, V., Bozza, F., & Tufano, D. (2017). Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine. SAE Technical Paper Series. doi:10.4271/2017-24-0015 es_ES
dc.description.references Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010 es_ES
dc.description.references Morra, E., Spessa, E., Ciaravino, C., & Vassallo, A. (2012). Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter. SAE International Journal of Alternative Powertrains, 1(1), 231-239. doi:10.4271/2012-01-1008 es_ES
dc.description.references Huo, Y., Yan, F., & Feng, D. (2018). A hybrid electric vehicle energy optimization strategy by using fueling control in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(3), 517-530. doi:10.1177/0954407017747372 es_ES
dc.description.references Liu, Z., Ivanco, A., & Filipi, Z. S. (2016). Impacts of Real-World Driving and Driver Aggressiveness on Fuel Consumption of 48V Mild Hybrid Vehicle. SAE International Journal of Alternative Powertrains, 5(2), 249-258. doi:10.4271/2016-01-1166 es_ES
dc.description.references Wang, R., Yu, W., & Meng, X. (2018). Performance investigation and energy optimization of a thermoelectric generator for a mild hybrid vehicle. Energy, 162, 1016-1028. doi:10.1016/j.energy.2018.08.103 es_ES
dc.description.references Solouk, A., Shakiba-Herfeh, M., Arora, J., & Shahbakhti, M. (2018). Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization. Energy Conversion and Management, 155, 100-115. doi:10.1016/j.enconman.2017.10.073 es_ES
dc.description.references Rouhani, A. (2013). A Comprehensive Method for Optimum Sizing of Hybrid Energy Systems using Intelligence Evolutionary Algorithms. Indian Journal of Science and Technology, 6(6), 1-11. doi:10.17485/ijst/2013/v6i6.3 es_ES
dc.description.references Varella, R., Giechaskiel, B., Sousa, L., & Duarte, G. (2018). Comparison of Portable Emissions Measurement Systems (PEMS) with Laboratory Grade Equipment. Applied Sciences, 8(9), 1633. doi:10.3390/app8091633 es_ES
dc.description.references Hochmann, G., Berger, A., & Mayrhofer, H. (2019). Achieving Compliance to RDE - How Does This Development Target Impact the Development Process, Testing Methodologies and Tools. SAE Technical Paper Series. doi:10.4271/2019-26-0358 es_ES
dc.description.references Shields, M. D., & Zhang, J. (2016). The generalization of Latin hypercube sampling. Reliability Engineering & System Safety, 148, 96-108. doi:10.1016/j.ress.2015.12.002 es_ES
dc.description.references Kašpar, J., Fornasiero, P., & Hickey, N. (2003). Automotive catalytic converters: current status and some perspectives. Catalysis Today, 77(4), 419-449. doi:10.1016/s0920-5861(02)00384-x es_ES
dc.description.references Favre, C., Bosteels, D., & May, J. (2013). Exhaust Emissions from European Market-Available Passenger Cars Evaluated on Various Drive Cycles. SAE Technical Paper Series. doi:10.4271/2013-24-0154 es_ES
dc.description.references Pavlovic, J., Ciuffo, B., Fontaras, G., Valverde, V., & Marotta, A. (2018). How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)? Transportation Research Part A: Policy and Practice, 111, 136-147. doi:10.1016/j.tra.2018.02.002 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Sari, R., Dimitrakopoulos, N., Tunér, M., & Tunestål, P. (2019). Performance and emissions of a series hybrid vehicle powered by a gasoline partially premixed combustion engine. Applied Thermal Engineering, 150, 564-575. doi:10.1016/j.applthermaleng.2019.01.035 es_ES


This item appears in the following Collection(s)

Show simple item record