- -

Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine

Mostrar el registro completo del ítem

García Martínez, A.; Monsalve-Serrano, J.; Martínez-Boggio, SD.; Wittek, K. (2020). Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy. 195:1-19. https://doi.org/10.1016/j.energy.2020.117039

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167739

Ficheros en el ítem

Metadatos del ítem

Título: Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine
Autor: García Martínez, Antonio Monsalve-Serrano, Javier Martínez-Boggio, Santiago Daniel Wittek, Karsten
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] After the diesel emissions scandal, also known as Dieselgate, Direct Injection Spark-Ignited (DISI) internal combustion engines (ICE) appears as the most promising alternative to mitigate the harmful tailpipe emissions ...[+]
Palabras clave: Hybrid powertrain , Downsized combustion engines , Variable compression ratio , Emissions regulations , Driving cycles
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Energy. (issn: 0360-5442 )
DOI: 10.1016/j.energy.2020.117039
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.energy.2020.117039
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
info:eu-repo/grantAgreement/UPV//SP20180148/
Agradecimientos:
The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Politecnica ...[+]
Tipo: Artículo

References

González, R. M., Marrero, G. A., Rodríguez-López, J., & Marrero, Á. S. (2019). Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach. Energy Policy, 129, 1271-1281. doi:10.1016/j.enpol.2019.03.031

Dua, R., White, K., & Lindland, R. (2019). Understanding potential for battery electric vehicle adoption using large-scale consumer profile data. Energy Reports, 5, 515-524. doi:10.1016/j.egyr.2019.04.013

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036 [+]
González, R. M., Marrero, G. A., Rodríguez-López, J., & Marrero, Á. S. (2019). Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach. Energy Policy, 129, 1271-1281. doi:10.1016/j.enpol.2019.03.031

Dua, R., White, K., & Lindland, R. (2019). Understanding potential for battery electric vehicle adoption using large-scale consumer profile data. Energy Reports, 5, 515-524. doi:10.1016/j.egyr.2019.04.013

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036

Lanzarotto, D., Marchesoni, M., Passalacqua, M., Prato, A. P., & Repetto, M. (2018). Overview of different hybrid vehicle architectures. IFAC-PapersOnLine, 51(9), 218-222. doi:10.1016/j.ifacol.2018.07.036

Pasini, G., Lutzemberger, G., Frigo, S., Marelli, S., Ceraolo, M., Gentili, R., & Capobianco, M. (2016). Evaluation of an electric turbo compound system for SI engines: A numerical approach. Applied Energy, 162, 527-540. doi:10.1016/j.apenergy.2015.10.143

Zhou, X., Qin, D., & Hu, J. (2017). Multi-objective optimization design and performance evaluation for plug-in hybrid electric vehicle powertrains. Applied Energy, 208, 1608-1625. doi:10.1016/j.apenergy.2017.08.201

Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2020). Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering, 164, 114430. doi:10.1016/j.applthermaleng.2019.114430

Asghar, M., Bhatti, A. I., Ahmed, Q., & Murtaza, G. (2018). Energy Management Strategy for Atkinson Cycle Engine Based Parallel Hybrid Electric Vehicle. IEEE Access, 6, 28008-28018. doi:10.1109/access.2018.2835395

Solouk, A., Shakiba-herfeh, M., & Shahbakhti, M. (2017). Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine. SAE International Journal of Alternative Powertrains, 6(1), 54-67. doi:10.4271/2017-01-1153

Wang, C., Zhang, F., Wang, E., Yu, C., Gao, H., Liu, B., … Zhao, C. (2019). Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection. Applied Energy, 242, 248-259. doi:10.1016/j.apenergy.2019.03.123

Wolfgang, S., Sorger, H., Loesch, S., Unzeitig, W., Huettner, T., & Fuerhapter, A. (2017). The 2-Step VCR Conrod System - Modular System for High Efficiency and Reduced CO2. SAE Technical Paper Series. doi:10.4271/2017-01-0634

Wittek, K., Geiger, F., Andert, J., Martins, M., Cogo, V., & Lanzanova, T. (2019). Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, 183, 753-763. doi:10.1016/j.enconman.2019.01.037

Kleeberg, H., Tomazic, D., Dohmen, J., Wittek, K., & Balazs, A. (2013). Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System. SAE Technical Paper Series. doi:10.4271/2013-01-0288

Teodosio, L., De Bellis, V., Bozza, F., & Tufano, D. (2017). Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine. SAE Technical Paper Series. doi:10.4271/2017-24-0015

Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987

Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010

Morra, E., Spessa, E., Ciaravino, C., & Vassallo, A. (2012). Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter. SAE International Journal of Alternative Powertrains, 1(1), 231-239. doi:10.4271/2012-01-1008

Huo, Y., Yan, F., & Feng, D. (2018). A hybrid electric vehicle energy optimization strategy by using fueling control in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(3), 517-530. doi:10.1177/0954407017747372

Liu, Z., Ivanco, A., & Filipi, Z. S. (2016). Impacts of Real-World Driving and Driver Aggressiveness on Fuel Consumption of 48V Mild Hybrid Vehicle. SAE International Journal of Alternative Powertrains, 5(2), 249-258. doi:10.4271/2016-01-1166

Wang, R., Yu, W., & Meng, X. (2018). Performance investigation and energy optimization of a thermoelectric generator for a mild hybrid vehicle. Energy, 162, 1016-1028. doi:10.1016/j.energy.2018.08.103

Solouk, A., Shakiba-Herfeh, M., Arora, J., & Shahbakhti, M. (2018). Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization. Energy Conversion and Management, 155, 100-115. doi:10.1016/j.enconman.2017.10.073

Rouhani, A. (2013). A Comprehensive Method for Optimum Sizing of Hybrid Energy Systems using Intelligence Evolutionary Algorithms. Indian Journal of Science and Technology, 6(6), 1-11. doi:10.17485/ijst/2013/v6i6.3

Varella, R., Giechaskiel, B., Sousa, L., & Duarte, G. (2018). Comparison of Portable Emissions Measurement Systems (PEMS) with Laboratory Grade Equipment. Applied Sciences, 8(9), 1633. doi:10.3390/app8091633

Hochmann, G., Berger, A., & Mayrhofer, H. (2019). Achieving Compliance to RDE - How Does This Development Target Impact the Development Process, Testing Methodologies and Tools. SAE Technical Paper Series. doi:10.4271/2019-26-0358

Shields, M. D., & Zhang, J. (2016). The generalization of Latin hypercube sampling. Reliability Engineering & System Safety, 148, 96-108. doi:10.1016/j.ress.2015.12.002

Kašpar, J., Fornasiero, P., & Hickey, N. (2003). Automotive catalytic converters: current status and some perspectives. Catalysis Today, 77(4), 419-449. doi:10.1016/s0920-5861(02)00384-x

Favre, C., Bosteels, D., & May, J. (2013). Exhaust Emissions from European Market-Available Passenger Cars Evaluated on Various Drive Cycles. SAE Technical Paper Series. doi:10.4271/2013-24-0154

Pavlovic, J., Ciuffo, B., Fontaras, G., Valverde, V., & Marotta, A. (2018). How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)? Transportation Research Part A: Policy and Practice, 111, 136-147. doi:10.1016/j.tra.2018.02.002

García, A., Monsalve-Serrano, J., Sari, R., Dimitrakopoulos, N., Tunér, M., & Tunestål, P. (2019). Performance and emissions of a series hybrid vehicle powered by a gasoline partially premixed combustion engine. Applied Thermal Engineering, 150, 564-575. doi:10.1016/j.applthermaleng.2019.01.035

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem