- -

Potential of a Two-Stage Variable Compression Ratio Downsized Spark Ignition Engine for Passenger Cars under different driving conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potential of a Two-Stage Variable Compression Ratio Downsized Spark Ignition Engine for Passenger Cars under different driving conditions

Mostrar el registro completo del ítem

López, JJ.; García Martínez, A.; Monsalve-Serrano, J.; Vielmo-Cogo, V.; Wittek, K. (2020). Potential of a Two-Stage Variable Compression Ratio Downsized Spark Ignition Engine for Passenger Cars under different driving conditions. Energy Conversion and Management. 203:1-15. https://doi.org/10.1016/j.enconman.2019.112251

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167740

Ficheros en el ítem

Metadatos del ítem

Título: Potential of a Two-Stage Variable Compression Ratio Downsized Spark Ignition Engine for Passenger Cars under different driving conditions
Autor: López, J. Javier García Martínez, Antonio Monsalve-Serrano, Javier Vielmo-Cogo, Vitor Wittek, Karsten
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] With the aim of reducing pollutant emissions from internal combustion engines (ICE), the application of stoichiometrically operated spark ignition (SI) engines, for light-duty vehicles, has been overcoming the compression ...[+]
Palabras clave: Variable compression ratio , Downsized internal combustion engines , Fuel consumption , Driving cycles
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Energy Conversion and Management. (issn: 0196-8904 )
DOI: 10.1016/j.enconman.2019.112251
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.enconman.2019.112251
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/UPV//SP20180148/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102025-B-I00/ES/EVALUACION DE LA REDUCCION DE EMISIONES CONTAMINANTES Y CO2 CON EL USO DE COMBUSTIBLES LIMPIOS EN VEHICULOS HIBRIDOS/
Agradecimientos:
This research has been partially funded by FEDER and the Spanish Government through project RTI2018-102025-B-I00. The authors also acknowledge the Universitat Politecnica de Valencia for partially supporting this research ...[+]
Tipo: Artículo

References

Amelang S, Wehrmann B. Dieselgate – a timeline of Germany’s car emissions fraud scandal | Clean Energy Wire n.d. https://www.cleanenergywire.org/factsheets/dieselgate-timeline-germanys-car-emissions-fraud-scandal (accessed September 2, 2019).

Luján, J. M., Bermúdez, V., Dolz, V., & Monsalve-Serrano, J. (2018). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112-121. doi:10.1016/j.atmosenv.2017.11.056

E, J., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., … Zhang, Z. (2017). Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renewable and Sustainable Energy Reviews, 80, 620-647. doi:10.1016/j.rser.2017.05.250 [+]
Amelang S, Wehrmann B. Dieselgate – a timeline of Germany’s car emissions fraud scandal | Clean Energy Wire n.d. https://www.cleanenergywire.org/factsheets/dieselgate-timeline-germanys-car-emissions-fraud-scandal (accessed September 2, 2019).

Luján, J. M., Bermúdez, V., Dolz, V., & Monsalve-Serrano, J. (2018). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112-121. doi:10.1016/j.atmosenv.2017.11.056

E, J., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., … Zhang, Z. (2017). Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renewable and Sustainable Energy Reviews, 80, 620-647. doi:10.1016/j.rser.2017.05.250

Jurić, F., Petranović, Z., Vujanović, M., Katrašnik, T., Vihar, R., Wang, X., & Duić, N. (2019). Experimental and numerical investigation of injection timing and rail pressure impact on combustion characteristics of a diesel engine. Energy Conversion and Management, 185, 730-739. doi:10.1016/j.enconman.2019.02.039

E, J., Zhao, X., Qiu, L., Wei, K., Zhang, Z., Deng, Y., … Liu, G. (2019). Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Conversion and Management, 193, 149-161. doi:10.1016/j.enconman.2019.04.062

E, J., Zuo, W., Gao, J., Peng, Q., Zhang, Z., & Hieu, P. M. (2016). Effect analysis on pressure drop of the continuous regeneration-diesel particulate filter based on NO 2 assisted regeneration. Applied Thermal Engineering, 100, 356-366. doi:10.1016/j.applthermaleng.2016.02.031

Huang, Y., Ng, E. C. Y., Yam, Y., Lee, C. K. C., Surawski, N. C., Mok, W., … Chan, E. F. C. (2019). Impact of potential engine malfunctions on fuel consumption and gaseous emissions of a Euro VI diesel truck. Energy Conversion and Management, 184, 521-529. doi:10.1016/j.enconman.2019.01.076

Deng, Y., Liu, H., Zhao, X., E, J., & Chen, J. (2018). Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model. Applied Energy, 210, 279-287. doi:10.1016/j.apenergy.2017.10.093

García, A., Monsalve-Serrano, J., Heuser, B., Jakob, M., Kremer, F., & Pischinger, S. (2016). Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass. Energy Conversion and Management, 108, 243-254. doi:10.1016/j.enconman.2015.11.010

Benajes, J., Pastor, J. V., García, A., & Boronat, V. (2016). A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 126, 497-508. doi:10.1016/j.enconman.2016.08.023

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015

Wang, Z., Liu, H., & Reitz, R. D. (2017). Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science, 61, 78-112. doi:10.1016/j.pecs.2017.03.004

Santos, H., & Costa, M. (2008). Evaluation of the conversion efficiency of ceramic and metallic three way catalytic converters. Energy Conversion and Management, 49(2), 291-300. doi:10.1016/j.enconman.2007.06.008

Heck, R. M., & Farrauto, R. J. (2001). Automobile exhaust catalysts. Applied Catalysis A: General, 221(1-2), 443-457. doi:10.1016/s0926-860x(01)00818-3

Feng, D., Wei, H., & Pan, M. (2018). Comparative study on combined effects of cooled EGR with intake boosting and variable compression ratios on combustion and emissions improvement in a SI engine. Applied Thermal Engineering, 131, 192-200. doi:10.1016/j.applthermaleng.2017.11.110

European Environment Agency (EEA). Monitoring CO2 emissions from new passenger cars and vans in 2017. 2018. doi:10.2800/74986.

Society of Motor Manufacturers and Traders (SMMT). Fall in new car market wake up call to policy makers as environmental goals at risk. 2019.

Kalghatgi, G. T. (2015). Developments in internal combustion engines and implications for combustion science and future transport fuels. Proceedings of the Combustion Institute, 35(1), 101-115. doi:10.1016/j.proci.2014.10.002

Su, J., Xu, M., Li, T., Gao, Y., & Wang, J. (2014). Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine. Energy Conversion and Management, 78, 65-73. doi:10.1016/j.enconman.2013.10.041

Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079

Zhuang, Y., Qian, Y., & Hong, G. (2017). The effect of ethanol direct injection on knock mitigation in a gasoline port injection engine. Fuel, 210, 187-197. doi:10.1016/j.fuel.2017.08.060

Zhou, L., Dong, K., Hua, J., Wei, H., Chen, R., & Han, Y. (2018). Effects of applying EGR with split injection strategy on combustion performance and knock resistance in a spark assisted compression ignition (SACI) engine. Applied Thermal Engineering, 145, 98-109. doi:10.1016/j.applthermaleng.2018.09.001

Luján, J. M., Climent, H., Novella, R., & Rivas-Perea, M. E. (2015). Influence of a low pressure EGR loop on a gasoline turbocharged direct injection engine. Applied Thermal Engineering, 89, 432-443. doi:10.1016/j.applthermaleng.2015.06.039

Li, T., Wang, B., & Zheng, B. (2016). A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion. Energy Conversion and Management, 123, 140-152. doi:10.1016/j.enconman.2016.06.038

Lanzanova, T. D. M., Dalla Nora, M., Martins, M. E. S., Machado, P. R. M., Pedrozo, V. B., & Zhao, H. (2019). The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol. Applied Energy, 253, 113508. doi:10.1016/j.apenergy.2019.113508

Noce, T., da Silva, R. R., Morais, R., Sales, L. C. M., Hanriot, S. de M., & Sodré, J. R. (2018). Energy factors for flexible fuel engines and vehicles operating with gasoline-ethanol blends. Transportation Research Part D: Transport and Environment, 65, 368-374. doi:10.1016/j.trd.2018.09.002

Wittek K, Geiger F, Andert J, Martins MES, Oliveira M. An Overview of VCR Technology and Its Effects on a Turbocharged DI Engine Fueled with Ethanol and Gasoline. SAE Tech Pap 2017:2017-36-0357. doi:10.4271/2017-36-0357.

Hiyoshi R. Variable compression ratio engine. US2013/0327302A1, 2013.

Moteki K, Fujimoto H, Aoyama S. Variable compression ratio mechanism of reciprocating internal combustion engine. US6505582B2, 2003.

Larsen GJ. Reciprocating piston engine with a varying compression ratio. US5025757A, 1991.

Wittek K. Hydraulic freewheel for an internal combustion engine with variable compression ratio. US9677469B2, 2017.

Rao VDN, German DJ, Vrsek GA, Chottiner E, Madin MM. Variable compression ratio pistons and connecting rods. US6568357B1, 2003.

Kleeberg H, Tomazic D, Dohmen J, Wittek K, Balazs A. Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System. SAE Tech Pap 2013:2013-01-0288. doi:10.4271/2013-01-0288.

Shelby MH, Leone TG, Byrd KD, Wong FK. Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles. SAE Int J Engines 2017;10:2017-01-0639. doi:10.4271/2017-01-0639.

Boretti, A., & Scalzo, J. (2012). Novel Crankshaft Mechanism and Regenerative Braking System to Improve the Fuel Economy of Light Duty Vehicles and Passenger Cars. SAE International Journal of Passenger Cars - Mechanical Systems, 5(4), 1177-1193. doi:10.4271/2012-01-1755

Teodosio L, De Bellis V, Bozza F, Tufano D. Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine. SAE Tech Pap 2017:2017-24–0015. doi:10.4271/2017-24-0015.

Hoyer KS, Moore WR, Confer K. A Simulation Method to Guide DISI Engine Redesign for Increased Efficiency using Alcohol Fuel Blends. SAE Int J Engines 2010:2010-01-1203. doi:10.4271/2010-01-1203.

Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987

Wittek, K., Geiger, F., Andert, J., Martins, M., Cogo, V., & Lanzanova, T. (2019). Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, 183, 753-763. doi:10.1016/j.enconman.2019.01.037

Klein P. Zylinderdruckbasierte Fuellungserfassung für Verbrennungsmotoren 2009.

Taylor JR. An introduction to error analysis. 2nd ed. 1997.

Gao, J., Chen, H., Li, Y., Chen, J., Zhang, Y., Dave, K., & Huang, Y. (2019). Fuel consumption and exhaust emissions of diesel vehicles in worldwide harmonized light vehicles test cycles and their sensitivities to eco-driving factors. Energy Conversion and Management, 196, 605-613. doi:10.1016/j.enconman.2019.06.038

Tsokolis, D., Tsiakmakis, S., Dimaratos, A., Fontaras, G., Pistikopoulos, P., Ciuffo, B., & Samaras, Z. (2016). Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Applied Energy, 179, 1152-1165. doi:10.1016/j.apenergy.2016.07.091

T.J. Barlow I. S. McCrae, and P.G. Boulter SL. A reference book of driving cycles for use in the measurement of road vehicle emissions. 2009.

André, M. (2004). The ARTEMIS European driving cycles for measuring car pollutant emissions. Science of The Total Environment, 334-335, 73-84. doi:10.1016/j.scitotenv.2004.04.070

Wittek, K., Tiemann, C., & Pischinger, S. (2009). Two-Stage Variable Compression Ratio with Eccentric Piston Pin and Exploitation of Crank Train Forces. SAE International Journal of Engines, 2(1), 1304-1313. doi:10.4271/2009-01-1457

Caton, J. A. (2017). The interactions between IC engine thermodynamics and knock. Energy Conversion and Management, 143, 162-172. doi:10.1016/j.enconman.2017.04.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem