- -

Potential of a Two-Stage Variable Compression Ratio Downsized Spark Ignition Engine for Passenger Cars under different driving conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potential of a Two-Stage Variable Compression Ratio Downsized Spark Ignition Engine for Passenger Cars under different driving conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López, J. Javier es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Vielmo-Cogo, Vitor es_ES
dc.contributor.author Wittek, Karsten es_ES
dc.date.accessioned 2021-06-10T03:31:56Z
dc.date.available 2021-06-10T03:31:56Z
dc.date.issued 2020-01-01 es_ES
dc.identifier.issn 0196-8904 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167740
dc.description.abstract [EN] With the aim of reducing pollutant emissions from internal combustion engines (ICE), the application of stoichiometrically operated spark ignition (SI) engines, for light-duty vehicles, has been overcoming the compression ignition (CI) engines market share throughout the past years. The ability of a substantial reduction of the primary harmful emissions (HC, CO, and NOx) through the use of the simple three-way catalyst (TWC) is the main reason for that. Nonetheless, with increasing attention to CO2 emissions, the development of highly efficient downsized SI engines turn to be of enormous interest. The synergies of multiple systems such as direct injection, turbocharger, and variable valve actuation are able to lead the SI efficiencies closer to those of CI engines. However, to enable high load operation on such downsized engines, the compression ratio (CR) must be reduced due to knock limitations, reducing the partial-load operations efficiency. The implementation of two-stage variable compression ratio (VCR) systems enables the extraction of high thermal efficiency with high CR at lower loads and extended knock-free high load operation with low CR. In this study, the evaluation of a two-stage VCR system applied to a state-of-the-art downsized SI engine was made through standard driving cycle simulations. The VCR mechanism is composed of an eccentric element in the small end of the connecting rod, which is rotated to increase/decrease the effective connecting rod length, achieving the CRs of 12.11:1 and 9.56:1. The engine was run in an eddy-current dynamometer test bench throughout the essential operating range to obtain the brake specific fuel consumption (BSFC) map. The VCR mechanism CR switching delay was also experimentally characterized to derive a function of the operating conditions. The measured map was entered into the map-based driving cycle simulation with a sub-model to account for the isolated effects of the transient period encompassing the compression ratio switching. The results show that slow CR transitions lead to fuel consumption penalties, which suggests the need for optimizing the control strategies of the VCR system. Even though this penalty, once the gear up-shift speed is optimized for each driving cycle, the VCR system still enables fuel consumption reductions up to 3% on the WLTC driving cycle, up to 4% on the proposed urban driving cycles and up to 3% on highway driving cycles with respect to the fixed CR. es_ES
dc.description.sponsorship This research has been partially funded by FEDER and the Spanish Government through project RTI2018-102025-B-I00. The authors also acknowledge the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Lnvestigacion (PAID-06-18). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Conversion and Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Variable compression ratio es_ES
dc.subject Downsized internal combustion engines es_ES
dc.subject Fuel consumption es_ES
dc.subject Driving cycles es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Potential of a Two-Stage Variable Compression Ratio Downsized Spark Ignition Engine for Passenger Cars under different driving conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enconman.2019.112251 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180148/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102025-B-I00/ES/EVALUACION DE LA REDUCCION DE EMISIONES CONTAMINANTES Y CO2 CON EL USO DE COMBUSTIBLES LIMPIOS EN VEHICULOS HIBRIDOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation López, JJ.; García Martínez, A.; Monsalve-Serrano, J.; Vielmo-Cogo, V.; Wittek, K. (2020). Potential of a Two-Stage Variable Compression Ratio Downsized Spark Ignition Engine for Passenger Cars under different driving conditions. Energy Conversion and Management. 203:1-15. https://doi.org/10.1016/j.enconman.2019.112251 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enconman.2019.112251 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 203 es_ES
dc.relation.pasarela S\398370 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Amelang S, Wehrmann B. Dieselgate – a timeline of Germany’s car emissions fraud scandal | Clean Energy Wire n.d. https://www.cleanenergywire.org/factsheets/dieselgate-timeline-germanys-car-emissions-fraud-scandal (accessed September 2, 2019). es_ES
dc.description.references Luján, J. M., Bermúdez, V., Dolz, V., & Monsalve-Serrano, J. (2018). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112-121. doi:10.1016/j.atmosenv.2017.11.056 es_ES
dc.description.references E, J., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., … Zhang, Z. (2017). Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renewable and Sustainable Energy Reviews, 80, 620-647. doi:10.1016/j.rser.2017.05.250 es_ES
dc.description.references Jurić, F., Petranović, Z., Vujanović, M., Katrašnik, T., Vihar, R., Wang, X., & Duić, N. (2019). Experimental and numerical investigation of injection timing and rail pressure impact on combustion characteristics of a diesel engine. Energy Conversion and Management, 185, 730-739. doi:10.1016/j.enconman.2019.02.039 es_ES
dc.description.references E, J., Zhao, X., Qiu, L., Wei, K., Zhang, Z., Deng, Y., … Liu, G. (2019). Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Conversion and Management, 193, 149-161. doi:10.1016/j.enconman.2019.04.062 es_ES
dc.description.references E, J., Zuo, W., Gao, J., Peng, Q., Zhang, Z., & Hieu, P. M. (2016). Effect analysis on pressure drop of the continuous regeneration-diesel particulate filter based on NO 2 assisted regeneration. Applied Thermal Engineering, 100, 356-366. doi:10.1016/j.applthermaleng.2016.02.031 es_ES
dc.description.references Huang, Y., Ng, E. C. Y., Yam, Y., Lee, C. K. C., Surawski, N. C., Mok, W., … Chan, E. F. C. (2019). Impact of potential engine malfunctions on fuel consumption and gaseous emissions of a Euro VI diesel truck. Energy Conversion and Management, 184, 521-529. doi:10.1016/j.enconman.2019.01.076 es_ES
dc.description.references Deng, Y., Liu, H., Zhao, X., E, J., & Chen, J. (2018). Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model. Applied Energy, 210, 279-287. doi:10.1016/j.apenergy.2017.10.093 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Heuser, B., Jakob, M., Kremer, F., & Pischinger, S. (2016). Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass. Energy Conversion and Management, 108, 243-254. doi:10.1016/j.enconman.2015.11.010 es_ES
dc.description.references Benajes, J., Pastor, J. V., García, A., & Boronat, V. (2016). A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio. Energy Conversion and Management, 126, 497-508. doi:10.1016/j.enconman.2016.08.023 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 es_ES
dc.description.references Wang, Z., Liu, H., & Reitz, R. D. (2017). Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science, 61, 78-112. doi:10.1016/j.pecs.2017.03.004 es_ES
dc.description.references Santos, H., & Costa, M. (2008). Evaluation of the conversion efficiency of ceramic and metallic three way catalytic converters. Energy Conversion and Management, 49(2), 291-300. doi:10.1016/j.enconman.2007.06.008 es_ES
dc.description.references Heck, R. M., & Farrauto, R. J. (2001). Automobile exhaust catalysts. Applied Catalysis A: General, 221(1-2), 443-457. doi:10.1016/s0926-860x(01)00818-3 es_ES
dc.description.references Feng, D., Wei, H., & Pan, M. (2018). Comparative study on combined effects of cooled EGR with intake boosting and variable compression ratios on combustion and emissions improvement in a SI engine. Applied Thermal Engineering, 131, 192-200. doi:10.1016/j.applthermaleng.2017.11.110 es_ES
dc.description.references European Environment Agency (EEA). Monitoring CO2 emissions from new passenger cars and vans in 2017. 2018. doi:10.2800/74986. es_ES
dc.description.references Society of Motor Manufacturers and Traders (SMMT). Fall in new car market wake up call to policy makers as environmental goals at risk. 2019. es_ES
dc.description.references Kalghatgi, G. T. (2015). Developments in internal combustion engines and implications for combustion science and future transport fuels. Proceedings of the Combustion Institute, 35(1), 101-115. doi:10.1016/j.proci.2014.10.002 es_ES
dc.description.references Su, J., Xu, M., Li, T., Gao, Y., & Wang, J. (2014). Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine. Energy Conversion and Management, 78, 65-73. doi:10.1016/j.enconman.2013.10.041 es_ES
dc.description.references Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079 es_ES
dc.description.references Zhuang, Y., Qian, Y., & Hong, G. (2017). The effect of ethanol direct injection on knock mitigation in a gasoline port injection engine. Fuel, 210, 187-197. doi:10.1016/j.fuel.2017.08.060 es_ES
dc.description.references Zhou, L., Dong, K., Hua, J., Wei, H., Chen, R., & Han, Y. (2018). Effects of applying EGR with split injection strategy on combustion performance and knock resistance in a spark assisted compression ignition (SACI) engine. Applied Thermal Engineering, 145, 98-109. doi:10.1016/j.applthermaleng.2018.09.001 es_ES
dc.description.references Luján, J. M., Climent, H., Novella, R., & Rivas-Perea, M. E. (2015). Influence of a low pressure EGR loop on a gasoline turbocharged direct injection engine. Applied Thermal Engineering, 89, 432-443. doi:10.1016/j.applthermaleng.2015.06.039 es_ES
dc.description.references Li, T., Wang, B., & Zheng, B. (2016). A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion. Energy Conversion and Management, 123, 140-152. doi:10.1016/j.enconman.2016.06.038 es_ES
dc.description.references Lanzanova, T. D. M., Dalla Nora, M., Martins, M. E. S., Machado, P. R. M., Pedrozo, V. B., & Zhao, H. (2019). The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol. Applied Energy, 253, 113508. doi:10.1016/j.apenergy.2019.113508 es_ES
dc.description.references Noce, T., da Silva, R. R., Morais, R., Sales, L. C. M., Hanriot, S. de M., & Sodré, J. R. (2018). Energy factors for flexible fuel engines and vehicles operating with gasoline-ethanol blends. Transportation Research Part D: Transport and Environment, 65, 368-374. doi:10.1016/j.trd.2018.09.002 es_ES
dc.description.references Wittek K, Geiger F, Andert J, Martins MES, Oliveira M. An Overview of VCR Technology and Its Effects on a Turbocharged DI Engine Fueled with Ethanol and Gasoline. SAE Tech Pap 2017:2017-36-0357. doi:10.4271/2017-36-0357. es_ES
dc.description.references Hiyoshi R. Variable compression ratio engine. US2013/0327302A1, 2013. es_ES
dc.description.references Moteki K, Fujimoto H, Aoyama S. Variable compression ratio mechanism of reciprocating internal combustion engine. US6505582B2, 2003. es_ES
dc.description.references Larsen GJ. Reciprocating piston engine with a varying compression ratio. US5025757A, 1991. es_ES
dc.description.references Wittek K. Hydraulic freewheel for an internal combustion engine with variable compression ratio. US9677469B2, 2017. es_ES
dc.description.references Rao VDN, German DJ, Vrsek GA, Chottiner E, Madin MM. Variable compression ratio pistons and connecting rods. US6568357B1, 2003. es_ES
dc.description.references Kleeberg H, Tomazic D, Dohmen J, Wittek K, Balazs A. Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System. SAE Tech Pap 2013:2013-01-0288. doi:10.4271/2013-01-0288. es_ES
dc.description.references Shelby MH, Leone TG, Byrd KD, Wong FK. Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles. SAE Int J Engines 2017;10:2017-01-0639. doi:10.4271/2017-01-0639. es_ES
dc.description.references Boretti, A., & Scalzo, J. (2012). Novel Crankshaft Mechanism and Regenerative Braking System to Improve the Fuel Economy of Light Duty Vehicles and Passenger Cars. SAE International Journal of Passenger Cars - Mechanical Systems, 5(4), 1177-1193. doi:10.4271/2012-01-1755 es_ES
dc.description.references Teodosio L, De Bellis V, Bozza F, Tufano D. Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine. SAE Tech Pap 2017:2017-24–0015. doi:10.4271/2017-24-0015. es_ES
dc.description.references Hoyer KS, Moore WR, Confer K. A Simulation Method to Guide DISI Engine Redesign for Increased Efficiency using Alcohol Fuel Blends. SAE Int J Engines 2010:2010-01-1203. doi:10.4271/2010-01-1203. es_ES
dc.description.references Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987 es_ES
dc.description.references Wittek, K., Geiger, F., Andert, J., Martins, M., Cogo, V., & Lanzanova, T. (2019). Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, 183, 753-763. doi:10.1016/j.enconman.2019.01.037 es_ES
dc.description.references Klein P. Zylinderdruckbasierte Fuellungserfassung für Verbrennungsmotoren 2009. es_ES
dc.description.references Taylor JR. An introduction to error analysis. 2nd ed. 1997. es_ES
dc.description.references Gao, J., Chen, H., Li, Y., Chen, J., Zhang, Y., Dave, K., & Huang, Y. (2019). Fuel consumption and exhaust emissions of diesel vehicles in worldwide harmonized light vehicles test cycles and their sensitivities to eco-driving factors. Energy Conversion and Management, 196, 605-613. doi:10.1016/j.enconman.2019.06.038 es_ES
dc.description.references Tsokolis, D., Tsiakmakis, S., Dimaratos, A., Fontaras, G., Pistikopoulos, P., Ciuffo, B., & Samaras, Z. (2016). Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Applied Energy, 179, 1152-1165. doi:10.1016/j.apenergy.2016.07.091 es_ES
dc.description.references T.J. Barlow I. S. McCrae, and P.G. Boulter SL. A reference book of driving cycles for use in the measurement of road vehicle emissions. 2009. es_ES
dc.description.references André, M. (2004). The ARTEMIS European driving cycles for measuring car pollutant emissions. Science of The Total Environment, 334-335, 73-84. doi:10.1016/j.scitotenv.2004.04.070 es_ES
dc.description.references Wittek, K., Tiemann, C., & Pischinger, S. (2009). Two-Stage Variable Compression Ratio with Eccentric Piston Pin and Exploitation of Crank Train Forces. SAE International Journal of Engines, 2(1), 1304-1313. doi:10.4271/2009-01-1457 es_ES
dc.description.references Caton, J. A. (2017). The interactions between IC engine thermodynamics and knock. Energy Conversion and Management, 143, 162-172. doi:10.1016/j.enconman.2017.04.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem