- -

Comparative global warming impact and NOx emissions of conventional and hydrogen automotive propulsion systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Comparative global warming impact and NOx emissions of conventional and hydrogen automotive propulsion systems

Show full item record

Desantes J.M.; Molina, S.; Novella Rosa, R.; López-Juárez, M. (2020). Comparative global warming impact and NOx emissions of conventional and hydrogen automotive propulsion systems. Energy Conversion and Management. 221(113137):1-9. https://doi.org/10.1016/j.enconman.2020.113137

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167743

Files in this item

Item Metadata

Title: Comparative global warming impact and NOx emissions of conventional and hydrogen automotive propulsion systems
Author: Desantes J.M. Molina, Santiago Novella Rosa, Ricardo López-Juárez, Marcos
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] With the rise of cleaner technologies for transport and the emergence of H-2 as a fuel, most of the emissions in the well-to-wheel process are shifting towards the energy carrier production (fuel or electricity). The ...[+]
Subjects: LCA , Hydrogen , Fuel cell , HICE , Hybrid vehicles , Electric vehicles
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Energy Conversion and Management. (issn: 0196-8904 )
DOI: 10.1016/j.enconman.2020.113137
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.enconman.2020.113137
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102025-B-I00/ES/EVALUACION DE LA REDUCCION DE EMISIONES CONTAMINANTES Y CO2 CON EL USO DE COMBUSTIBLES LIMPIOS EN VEHICULOS HIBRIDOS/
Thanks:
This research has been partially funded by FEDER and the Spanish Government through project RTI2018-102025-B-I00 (CLEAN-FUEL).
Type: Artículo

References

European Commission, A Clean Planet for all - A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy, Com (2018) 773; 2018. p. 114. URL:https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf%0Ahttps://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf?utm_campaign=AktuellHållbarhet-Direkten_181129_Username&utm_medium=email&utm_source=Eloqua&elqTrackId.

Fuel Cells & Hydrogen (FCH), Hydrogen Roadmap Europe - a Sustainable Pathway for the European Energy Transition, 1st Edition, Publications Office of the European Union; 2019. doi:10.2843/341510.

International Energy Agency, CO2 Emissions from Fuel Combustion, Tech. rep.; 2019. URL:https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019. [+]
European Commission, A Clean Planet for all - A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy, Com (2018) 773; 2018. p. 114. URL:https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf%0Ahttps://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf?utm_campaign=AktuellHållbarhet-Direkten_181129_Username&utm_medium=email&utm_source=Eloqua&elqTrackId.

Fuel Cells & Hydrogen (FCH), Hydrogen Roadmap Europe - a Sustainable Pathway for the European Energy Transition, 1st Edition, Publications Office of the European Union; 2019. doi:10.2843/341510.

International Energy Agency, CO2 Emissions from Fuel Combustion, Tech. rep.; 2019. URL:https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019.

European Environmental Agency (EEA), Greenhouse gas emissions from transport in Europe, Tech. rep., European Environmental Agency (EEA), Copenhagen; 2019. URL:https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12.

Boningari T, Smirniotis PG. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement, Current Opinion in Chemical Engineering 13(x):2016;133–141. doi:10.1016/j.coche.2016.09.004. URL: doi: 10.1016/j.coche.2016.09.004.

European Commission, EU Reference Scenario 2016, Tech. rep., European Commission; 2016. doi:10.2833/9127. URL:https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf [accessed on 25 August 2017].

Verhelst, S., & Wallner, T. (2009). Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science, 35(6), 490-527. doi:10.1016/j.pecs.2009.08.001

Zamel, N, Li X. Life cycle comparison of fuel cell vehicles and internal combustion engine vehicles for Canada and the United States. J Power Sour 162(2 SPEC. ISS.):2006:1241–53. doi:10.1016/j.jpowsour.2006.08.007.

Pehnt M. Life-cycle analysis of fuel cell system components. In: Handbook of fuel cells, vol. 4; 2003, Ch. 94. p. 1293–317. doi:10.1002/9780470974001.f312108.

Suwanmanee, U., Saebea, D., Hacker, V., Assabumrungrat, S., Arpornwichanop, A., & Authayanun, S. (2018). Conceptual design and life cycle assessment of decentralized power generation by HT-PEMFC system with sorption enhanced water gas shift loop. Energy Conversion and Management, 171, 20-30. doi:10.1016/j.enconman.2018.05.068

Safari F, Dincer I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conv Manage 205October 2019):2020;112182. doi:10.1016/j.enconman.2019.112182. URL: https://doi.org/10.1016/j.enconman.2019.112182.

Evangelisti, S., Tagliaferri, C., Brett, D. J. L., & Lettieri, P. (2017). Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles. Journal of Cleaner Production, 142, 4339-4355. doi:10.1016/j.jclepro.2016.11.159

Elgowainy A, Reddi K, Wang M. Life-Cycle Analysis of Hydrogen On-Board Storage Options, Argonne National Laboratory. URL:http://www.hydrogen.energy.gov/pdfs/review13/an034_elgowainy_2013_o.pdf.

García Sánchez, J. A., López Martínez, J. M., Lumbreras Martín, J., Flores Holgado, M. N., & Aguilar Morales, H. (2013). Impact of Spanish electricity mix, over the period 2008–2030, on the Life Cycle energy consumption and GHG emissions of Electric, Hybrid Diesel-Electric, Fuel Cell Hybrid and Diesel Bus of the Madrid Transportation System. Energy Conversion and Management, 74, 332-343. doi:10.1016/j.enconman.2013.05.023

Sherwood, S. C., Dixit, V., & Salomez, C. (2018). The global warming potential of near-surface emitted water vapour. Environmental Research Letters, 13(10), 104006. doi:10.1088/1748-9326/aae018

IPCC, Climate Change 2014, Tech. rep., Cambridge; 2015. URL:https://www.cambridge.org/core/product/identifier/CBO9781139177245A012/type/book_part.

European Commission - Eurostat, Energy balances; 2017. URL:https://ec.europa.eu/eurostat/web/energy/data/energy-balances.

Boyden, A., Soo, V. K., & Doolan, M. (2016). The Environmental Impacts of Recycling Portable Lithium-Ion Batteries. Procedia CIRP, 48, 188-193. doi:10.1016/j.procir.2016.03.100

Notter, D. A., Kouravelou, K., Karachalios, T., Daletou, M. K., & Haberland, N. T. (2015). Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy & Environmental Science, 8(7), 1969-1985. doi:10.1039/c5ee01082a

Keoleian G, Miller S, Kleine RD, Fang A, J.sley, Life Cycle Material Data Update for GREET Model - Report No. CSS12-12, Tech. rep.; 2012. URL:http://css.snre.umich.edu/css_doc/CSS12-12.pdf.

Transport Canada, GMC Sierra 1500 Hydrogen Internal Combustion Engine (HICE ) Test Results Report (June).

Hass H, Huss A, Maas H. Well-to-Wheels analysis of future automotive fuels and powertrains in the European context: Tank-to-Wheels Appendix 1 - Version 4.a, 2014. doi:10.2790/95839.

US DOE, Technology Assessment of a Fuel Cell Vehicle: 2017 Toyota Mirai Energy Systems Division, US DOE -Energy Systems Division. URL: www.anl.gov.

Lampert D, Cai H, Wang Z, Wu M, Han J, Dunn J, et al. Development of a Lice Cycle Inventory for Water Consumption Associated with the Production of Transportation Fuels, Tech. rep., Argonne National Laboratory - Energy Systems Division; 2015.

Hogerwaard J, Dincer I, Naterer GF. Experimental investigation and optimization of integrated photovoltaic and photoelectrochemical hydrogen generation. Energy Conv Manage 207(January):2020;112541. doi:10.1016/j.enconman.2020.112541. URL: https://doi.org/10.1016/j.enconman.2020.112541.

Nagapurkar P, Smith JD. Techno-economic optimization and environmental Life Cycle Assessment (LCA) of microgrids located in the US using genetic algorithm. Energy Conv Manage 181(December 2018):2019;272–91. doi:10.1016/j.enconman.2018.11.072. URL: doi: 10.1016/j.enconman.2018.11.072.

Antzara A, Heracleous E, Bukur DB, Lemonidou AA. Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture. Energy Procedia 63(May 2015):2014;6576–89. doi:10.1016/j.egypro.2014.11.694.

Farid A, Gallarda J, Mineur B, Bradley S, Ott W, Ibler M. Best available techniques for hydrogen production by steam methane reforming, IGC document. URL:http://www.eiga.eu.

Dai Q, Kelly JC, Elgowainy A. Vehicle Materials: Material Composition of U.S. Light-duty Vehicles, Tech. Rep. September, Argonne National Laboratory: Energy Systems Division; 2016.

Kawamura, A., Yanai, T., Sato, Y., Naganuma, K., Yamane, K., & Takagi, Y. (2009). Summary and Progress of the Hydrogen ICE Truck Development Project. SAE International Journal of Commercial Vehicles, 2(1), 110-117. doi:10.4271/2009-01-1922

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record