Mostrar el registro sencillo del ítem
dc.contributor.author | Hervás-Blasco, Estefanía | es_ES |
dc.contributor.author | Navarro-Peris, Emilio | es_ES |
dc.contributor.author | Corberán, José M. | es_ES |
dc.date.accessioned | 2021-06-10T03:32:21Z | |
dc.date.available | 2021-06-10T03:32:21Z | |
dc.date.issued | 2020-06-01 | es_ES |
dc.identifier.issn | 0378-7788 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167744 | |
dc.description.abstract | [EN] Passive houses linked to more efficient heating and cooling technologies have been one of the focus in last years. However, to close the loop of the building sector, there is still one open source: wasted heat from grey water. This paper addresses the potentiality of the wasted heat from grey water as a heat source to produce domestic hot water (DHW) based on a heat pump system (HP). A heat pump optimized for these applications, a heat recovery heat exchanger and two variable volume storage tanks compose the system. The main objective of this work is to determine the potential recovery of the wasted heat in order to minimize the building energy consumption. Design guidelines of the components and the analysis of an optimum operation algorithm of the system have been performed in order to minimize CO2 emissions. In addition, an evaluation of the potential heat recovery of the wasted heat is included. As an example, that methodology has been applied to 20 dwellings. Based on that case, the obtained results demonstrate that by recovering 80% of the available recovery heat, the total demand of DHW is satisfied with high levels of comfort and efficiency. | es_ES |
dc.description.sponsorship | Part of the work presented was carried out by Estefania Hervas Blasco with the financial support of a PhD scholarship from the Spanish government SFPI1500 x074478XV0. The authors would like also to acknowledge the Spanish `Ministerio de Economia Y Competitividad', through the project "Maximizacion de la Eficiencia Y Minimizacion del Impacto Ambiental de Bombas de Calor Para la Descarbonizacion de la Calefaccion/ACS EN Los Edificios de Consumo Casi Nulo" with the reference ENE2017-83665-C2-1-P for the given support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | Gobierno de España/SFPI1500 x 074478XV0 | es_ES |
dc.relation.ispartof | Energy and Buildings | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject | Heat recovery | es_ES |
dc.subject | Domestic hot water | es_ES |
dc.subject | Heat pump | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Closing the residential energy loop: Grey-water heat recovery system for domestic hot water production based on heat pumps | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.enbuild.2020.109962 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-83665-C2-1-P/ES/MAXIMIZACION DE LA EFICIENCIA Y MINIMIZACION DEL IMPACTO AMBIENTAL DE BOMBAS DE CALOR PARA LA DESCARBONIZACION DE LA CALEFACCION%2FACS EN LOS EDIFICIOS DE CONSUMO CASI NULO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Hervás-Blasco, E.; Navarro-Peris, E.; Corberán, JM. (2020). Closing the residential energy loop: Grey-water heat recovery system for domestic hot water production based on heat pumps. Energy and Buildings. 216:1-15. https://doi.org/10.1016/j.enbuild.2020.109962 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.enbuild.2020.109962 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 216 | es_ES |
dc.relation.pasarela | S\421937 | es_ES |
dc.contributor.funder | Gobierno de España | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | García-Álvarez, M. T., Moreno, B., & Soares, I. (2016). Analyzing the sustainable energy development in the EU-15 by an aggregated synthetic index. Ecological Indicators, 60, 996-1007. doi:10.1016/j.ecolind.2015.07.006 | es_ES |
dc.description.references | News and Developments – Architecture 20302018. https://architecture2030.org/news-and-developments/(Accessed 29 November 2018). | es_ES |
dc.description.references | Energy consumption in households - Statistics Explained2018. http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households(Accessed 1 August 2018). | es_ES |
dc.description.references | Technical | Passive House energy reduection and efficiency2017. http://recoupwwhrs.co.uk/technical/passive-house/(Accessed 1 August 2018). | es_ES |
dc.description.references | Meggers, F., & Leibundgut, H. (2011). The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump. Energy and Buildings, 43(4), 879-886. doi:10.1016/j.enbuild.2010.12.008 | es_ES |
dc.description.references | Hepbasli, A., Biyik, E., Ekren, O., Gunerhan, H., & Araz, M. (2014). A key review of wastewater source heat pump (WWSHP) systems. Energy Conversion and Management, 88, 700-722. doi:10.1016/j.enconman.2014.08.065 | es_ES |
dc.description.references | Spriet, J., & McNabola, A. (2019). Decentralized drain water heat recovery from commercial kitchens in the hospitality sector. Energy and Buildings, 194, 247-259. doi:10.1016/j.enbuild.2019.04.032 | es_ES |
dc.description.references | Baek, N. C., Shin, U. C., & Yoon, J. H. (2005). A study on the design and analysis of a heat pump heating system using wastewater as a heat source. Solar Energy, 78(3), 427-440. doi:10.1016/j.solener.2004.07.009 | es_ES |
dc.description.references | Nehm G., Nehme G., Palandre L., Clodic D.Purdue e-Pubs high efficiency heat pump for domestic hot water generation2008. | es_ES |
dc.description.references | Dar, U. I., Sartori, I., Georges, L., & Novakovic, V. (2014). Advanced control of heat pumps for improved flexibility of Net-ZEB towards the grid. Energy and Buildings, 69, 74-84. doi:10.1016/j.enbuild.2013.10.019 | es_ES |
dc.description.references | Cecchinato, L., Corradi, M., Fornasieri, E., & Zamboni, L. (2005). Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution. International Journal of Refrigeration, 28(8), 1250-1258. doi:10.1016/j.ijrefrig.2005.05.019 | es_ES |
dc.description.references | Kharagpur Indian Institute of Technology. Lesson 10 - Vapour Compression refrigeration systems. Refrig. Air Cond. Lect.2005:1–18. | es_ES |
dc.description.references | Gluesenkamp K.R., Patel V., Abdelaziz O., Mandel B., Dealmeida V.High efficiency water heating technology development-final report, part II: CO2 and absorption-based residential heat pump water heater development. 2017. | es_ES |
dc.description.references | Miquel Pitarch i Mocholí. High capacity heat pump development for sanitary hot water production. 2017. | es_ES |
dc.description.references | Hervás-Blasco, E., Navarro-Peris, E., Barceló-Ruescas, F., & Corberán, J. M. (2019). Improved water to water heat pump design for low-temperature waste heat recovery based on subcooling control. International Journal of Refrigeration, 106, 374-383. doi:10.1016/j.ijrefrig.2019.06.030 | es_ES |
dc.description.references | Tammaro, M., Montagud, C., Corberán, J. M., Mauro, A. W., & Mastrullo, R. (2017). Seasonal performance assessment of sanitary hot water production systems using propane and CO 2 heat pumps. International Journal of Refrigeration, 74, 224-239. doi:10.1016/j.ijrefrig.2016.09.026 | es_ES |
dc.description.references | Jensen, J. B., & Skogestad, S. (2007). Optimal operation of simple refrigeration cycles. Computers & Chemical Engineering, 31(5-6), 712-721. doi:10.1016/j.compchemeng.2006.12.003 | es_ES |
dc.description.references | Pitarch, M., Navarro-Peris, E., Gonzálvez-Maciá, J., & Corberán, J. M. (2017). Evaluation of different heat pump systems for sanitary hot water production using natural refrigerants. Applied Energy, 190, 911-919. doi:10.1016/j.apenergy.2016.12.166 | es_ES |
dc.description.references | Koeln, J. P., & Alleyne, A. G. (2014). Optimal subcooling in vapor compression systems via extremum seeking control: Theory and experiments. International Journal of Refrigeration, 43, 14-25. doi:10.1016/j.ijrefrig.2014.03.012 | es_ES |
dc.description.references | Hervas-Blasco, E., Pitarch, M., Navarro-Peris, E., & Corberán, J. M. (2018). Study of different subcooling control strategies in order to enhance the performance of a heat pump. International Journal of Refrigeration, 88, 324-336. doi:10.1016/j.ijrefrig.2018.02.003 | es_ES |
dc.description.references | Chow, T. T., Pei, G., Fong, K. F., Lin, Z., Chan, A. L. S., & He, M. (2010). Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong. Applied Energy, 87(2), 643-649. doi:10.1016/j.apenergy.2009.05.036 | es_ES |
dc.description.references | Baek N.C., Shin U.C., Yoon J.H.A study on the design and analysis of a heat pump heating system using wastewater as a heat source2004. doi:10.1016/j.solener.2004.07.009. | es_ES |
dc.description.references | REULENS, W., ‘Natural refrigerant CO2 edited by Walter Reulens October 2009 (Leonardo project)’ http://www.atmosphere2009.com/files/NaReCO2-handbook-2009.pdf. | es_ES |
dc.description.references | Tammaro, M., Montagud, C., Corberán, J. M., Mauro, A. W., & Mastrullo, R. (2015). A propane water-to-water heat pump booster for sanitary hot water production: Seasonal performance analysis of a new solution optimizing COP. International Journal of Refrigeration, 51, 59-69. doi:10.1016/j.ijrefrig.2014.12.008 | es_ES |
dc.description.references | Spriet, J., & McNabola, A. (2019). Decentralized drain water heat recovery: A probabilistic method for prediction of wastewater and heating system interaction. Energy and Buildings, 183, 684-696. doi:10.1016/j.enbuild.2018.11.036 | es_ES |
dc.description.references | Hervás-Blasco, E., Navarro-Peris, E., & Corberán, J. M. (2019). Optimal design and operation of a central domestic hot water heat pump system for a group of dwellings employing low temperature waste heat as a source. Energy, 188, 115979. doi:10.1016/j.energy.2019.115979 | es_ES |
dc.description.references | Ferrantelli, A., Ahmed, K., Pylsy, P., & Kurnitski, J. (2017). Analytical modelling and prediction formulas for domestic hot water consumption in residential Finnish apartments. Energy and Buildings, 143, 53-60. doi:10.1016/j.enbuild.2017.03.021 | es_ES |
dc.description.references | Zhen L., Lin D.M., Shu H.W., Jiang S., Zhu Y.X. District cooling and heating with seawater as heat source and sink in Dalian, China. vol. 32. 2007. doi:10.1016/j.renene.2006.12.015. | es_ES |
dc.description.references | Torío, H., & Schmidt, D. (2010). Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis. Energy and Buildings, 42(10), 1601-1609. doi:10.1016/j.enbuild.2010.04.002 | es_ES |
dc.description.references | Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., & Mathiesen, B. V. (2014). 4th Generation District Heating (4GDH). Energy, 68, 1-11. doi:10.1016/j.energy.2014.02.089 | es_ES |
dc.description.references | Alnahhal S., Spremberg E.Contribution to exemplary in-house wastewater heat recovery in Berlin, 2016;40:35–40. doi:10.1016/j.procir.2016.01.046. | es_ES |
dc.description.references | Baek N.C., Shin U.C., Yoon J.H. A study on the design and analysis of a heat pump heating system using wastewater as a heat source2004. doi:10.1016/j.solener.2004.07.009. | es_ES |
dc.description.references | Ni, L., Lau, S. K., Li, H., Zhang, T., Stansbury, J. S., Shi, J., & Neal, J. (2012). Feasibility study of a localized residential grey water energy-recovery system. Applied Thermal Engineering, 39, 53-62. doi:10.1016/j.applthermaleng.2012.01.031 | es_ES |
dc.description.references | Bertrand, A., Aggoune, R., & Maréchal, F. (2017). In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs. Applied Energy, 192, 110-125. doi:10.1016/j.apenergy.2017.01.096 | es_ES |
dc.description.references | Liu, L., Fu, L., & Jiang, Y. (2010). Application of an exhaust heat recovery system for domestic hot water. Energy, 35(3), 1476-1481. doi:10.1016/j.energy.2009.12.004 | es_ES |
dc.description.references | Chen, W., Liang, S., Guo, Y., Cheng, K., Gui, X., & Tang, D. (2013). Investigation on the thermal performance and optimization of a heat pump water heater assisted by shower waste water. Energy and Buildings, 64, 172-181. doi:10.1016/j.enbuild.2013.04.021 | es_ES |
dc.description.references | McNabola, A., & Shields, K. (2013). Efficient drain water heat recovery in horizontal domestic shower drains. Energy and Buildings, 59, 44-49. doi:10.1016/j.enbuild.2012.12.026 | es_ES |
dc.description.references | Wong, L. T., Mui, K. W., & Guan, Y. (2010). Shower water heat recovery in high-rise residential buildings of Hong Kong. Applied Energy, 87(2), 703-709. doi:10.1016/j.apenergy.2009.08.008 | es_ES |
dc.description.references | Postrioti, L., Baldinelli, G., Bianchi, F., Buitoni, G., Maria, F. D., & Asdrubali, F. (2016). An experimental setup for the analysis of an energy recovery system from wastewater for heat pumps in civil buildings. Applied Thermal Engineering, 102, 961-971. doi:10.1016/j.applthermaleng.2016.04.016 | es_ES |
dc.description.references | Hervas-Blasco, E., Pitarch, M., Navarro-Peris, E., & Corberán, J. M. (2017). Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers. Energy, 127, 558-570. doi:10.1016/j.energy.2017.03.131 | es_ES |
dc.description.references | TRNSYS 17. 2009. | es_ES |
dc.description.references | Fischer, D., Wolf, T., Scherer, J., & Wille-Haussmann, B. (2016). A stochastic bottom-up model for space heating and domestic hot water load profiles for German households. Energy and Buildings, 124, 120-128. doi:10.1016/j.enbuild.2016.04.069 | es_ES |
dc.description.references | Federal ministry for the environment nature conservation and nuclear safety. Wasserverbrauch im haushalt | media | BMU2013. https://www.bmu.de/media/wasserverbrauch-im-haushalt/(Accessed 15 November 2018). | es_ES |
dc.description.references | Saker, D., Vahdati, M., Coker, P. J., & Millward, S. (2015). Assessing the benefits of domestic hot fill washing appliances. Energy and Buildings, 93, 282-294. doi:10.1016/j.enbuild.2015.02.027 | es_ES |
dc.description.references | Hasan, A. A., Goswami, D. Y., & Vijayaraghavan, S. (2002). First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source. Solar Energy, 73(5), 385-393. doi:10.1016/s0038-092x(02)00113-5 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |