- -

Experimental verification of hydrodynamic similarity in hot flows

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Experimental verification of hydrodynamic similarity in hot flows

Show full item record

Torregrosa, AJ.; Broatch, A.; Garcia Tiscar, J.; Roig-Villanueva, F. (2020). Experimental verification of hydrodynamic similarity in hot flows. Experimental Thermal and Fluid Science. 119:1-6. https://doi.org/10.1016/j.expthermflusci.2020.110220

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167745

Files in this item

Item Metadata

Title: Experimental verification of hydrodynamic similarity in hot flows
Author: Torregrosa, A. J. Broatch, A. GARCIA TISCAR, JORGE Roig-Villanueva, Ferran
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] This paper examines a common hypothesis in the design of internal combustion engine exhaust lines, namely that the ratio of the total pressure drop across the line to the inlet dynamic head should be a function only ...[+]
Subjects: Automotive engineering , Exhaust lines , Catalytic converters , Internal combustion engines
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Experimental Thermal and Fluid Science. (issn: 0894-1777 )
DOI: 10.1016/j.expthermflusci.2020.110220
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.expthermflusci.2020.110220
Project ID:
info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/
info:eu-repo/grantAgreement/UPV//PAID-01-17/
Thanks:
The equipment used in this work has been partially supported by FEDER project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte ...[+]
Type: Artículo

References

D. Rowley, Exhaust system considerations for 1982 heavy duty trucks, in: SAE Technical Paper, SAE International, 1977. doi:10.4271/770893.

D. Deshmukh, J. Modak, K. Nayak, Experimental analysis of backpressure phenomenon consideration for c.i. engine performance improvement, in: SAE Technical Paper, no. 2010-01-1575, SAE International, 2010. doi:10.4271/2010-01-1575.

N. Kumar, A. Saroop, A. Kuchhal, V. Chauhan, S. Sharma, Effect of muffler characteristics on performance of a naturally aspirated si engine, in: SAE Technical Paper, no. 2013-01-2834, SAE International, 2013. doi:10.4271/2013-01-2834. [+]
D. Rowley, Exhaust system considerations for 1982 heavy duty trucks, in: SAE Technical Paper, SAE International, 1977. doi:10.4271/770893.

D. Deshmukh, J. Modak, K. Nayak, Experimental analysis of backpressure phenomenon consideration for c.i. engine performance improvement, in: SAE Technical Paper, no. 2010-01-1575, SAE International, 2010. doi:10.4271/2010-01-1575.

N. Kumar, A. Saroop, A. Kuchhal, V. Chauhan, S. Sharma, Effect of muffler characteristics on performance of a naturally aspirated si engine, in: SAE Technical Paper, no. 2013-01-2834, SAE International, 2013. doi:10.4271/2013-01-2834.

T. George, H. Raj, Energy efficient design and modification of an automotive exhaust muffler for optimum noise, transmission loss, insertion loss and back pressure: A review, in: International Conference on Mechanical, Materials and Renew. Energ. doi:10.1088/1757-899X/377/1/012127.

Torregrosa, A. J., Broatch, A., Bermúdez, V., & Andrés, I. (2005). Experimental assessment of emission models used for IC engine exhaust noise prediction. Experimental Thermal and Fluid Science, 30(2), 97-107. doi:10.1016/j.expthermflusci.2005.05.001

J. Kim, M. Corsetti, L. Biundo, D. Dobson, R. Beason, Modeling and measuring exhaust backpressure resulting from flow restriction through an aftertreatment system, in: SAE Technical Paper, no. 2003-01-0939, SAE International, 2003. doi:10.4271/2003-01-0939.

M. Dixit, V. Sundaram, S. Kumar, A novel approach for flow simulation and back pressure prediction of cold end exhaust system, in: SAE Technical Paper, no. 2016-28-0235, SAE International, 2016. doi:10.4271/2016-28-0235.

D. Ukrop, M. Shanks, M. Carter, Predicting running vehicle exhaust back pressure in a laboratory using air flowing at room temperature and spreadsheet calculations, in: SAE Technical Paper, no. 2009-01-1154, SAE International, 2009. doi:10.4271/2009-01-1154.

F. Payri, A. Torregrosa, A. Broatch, J. Brunel, Pressure loss characterisation of perforated ducts, in: SAE Technical Paper, no. 980282, SAE International, 1998. doi:10.4271/980282. URL https://doi.org/10.4271/980282.

Persoons, T., Vanierschot, M., & Van den Bulck, E. (2008). Stereoscopic PIV measurements of swirling flow entering a catalyst substrate. Experimental Thermal and Fluid Science, 32(8), 1590-1596. doi:10.1016/j.expthermflusci.2008.04.011

Persoons, T., Vanierschot, M., & Van den Bulck, E. (2008). Oblique inlet pressure loss for swirling flow entering a catalyst substrate. Experimental Thermal and Fluid Science, 32(6), 1222-1231. doi:10.1016/j.expthermflusci.2008.02.002

Sutherland, W. (1893). LII. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223), 507-531. doi:10.1080/14786449308620508

Crane Company. Engineering Division, Flow of fluids through valves, fittings, and pipe, Tech. Rep. TP-410 (1942).

Fisher, Control valve handbook, 4th Edition, Emerson Process Management, Marshalltown, Iowa 50158 USA, 2005.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record