- -

Experimental verification of hydrodynamic similarity in hot flows

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental verification of hydrodynamic similarity in hot flows

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Broatch, A. es_ES
dc.contributor.author GARCIA TISCAR, JORGE es_ES
dc.contributor.author Roig-Villanueva, Ferran es_ES
dc.date.accessioned 2021-06-10T03:32:26Z
dc.date.available 2021-06-10T03:32:26Z
dc.date.issued 2020-11-01 es_ES
dc.identifier.issn 0894-1777 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167745
dc.description.abstract [EN] This paper examines a common hypothesis in the design of internal combustion engine exhaust lines, namely that the ratio of the total pressure drop across the line to the inlet dynamic head should be a function only of the Reynolds number. While incompressible flow theory, provided that some simplifications are considered, is often used in support of this hypothesis, detailed experimental verification in actual exhaust lines is absent from the literature. Production exhaust lines contain non-trivial flow complexities such as muffler devices and catalytic converters and, in the case of high-performance engines, often operate at high temperature and high mass flow conditions, thereby rendering the usual theoretical simplifications doubtful. In this work, a production exhaust line composed of cold and hot ends, featuring a muffler and a catalytic converter, is tested at a variety of conditions. Analysis of the results shows that compressibility corrections must be factored in at certain conditions routinely found in actual high-performance engines, and that for hot ends, laminar flow at the converter monolith channels may pose a challenge to the hydrodynamic similarity hypothesis. es_ES
dc.description.sponsorship The equipment used in this work has been partially supported by FEDER project funds "Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), [FEDER-ICTS-2012-06]" framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economia y Competitividad. F. Roig is supported through the Programa de Apoyo para la Investigation y Desarrollo of the Universitat Politecnica de Valencia [PAID-01-17] es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Experimental Thermal and Fluid Science es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Automotive engineering es_ES
dc.subject Exhaust lines es_ES
dc.subject Catalytic converters es_ES
dc.subject Internal combustion engines es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Experimental verification of hydrodynamic similarity in hot flows es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.expthermflusci.2020.110220 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-17/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Broatch, A.; Garcia Tiscar, J.; Roig-Villanueva, F. (2020). Experimental verification of hydrodynamic similarity in hot flows. Experimental Thermal and Fluid Science. 119:1-6. https://doi.org/10.1016/j.expthermflusci.2020.110220 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.expthermflusci.2020.110220 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 119 es_ES
dc.relation.pasarela S\415935 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references D. Rowley, Exhaust system considerations for 1982 heavy duty trucks, in: SAE Technical Paper, SAE International, 1977. doi:10.4271/770893. es_ES
dc.description.references D. Deshmukh, J. Modak, K. Nayak, Experimental analysis of backpressure phenomenon consideration for c.i. engine performance improvement, in: SAE Technical Paper, no. 2010-01-1575, SAE International, 2010. doi:10.4271/2010-01-1575. es_ES
dc.description.references N. Kumar, A. Saroop, A. Kuchhal, V. Chauhan, S. Sharma, Effect of muffler characteristics on performance of a naturally aspirated si engine, in: SAE Technical Paper, no. 2013-01-2834, SAE International, 2013. doi:10.4271/2013-01-2834. es_ES
dc.description.references T. George, H. Raj, Energy efficient design and modification of an automotive exhaust muffler for optimum noise, transmission loss, insertion loss and back pressure: A review, in: International Conference on Mechanical, Materials and Renew. Energ. doi:10.1088/1757-899X/377/1/012127. es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Bermúdez, V., & Andrés, I. (2005). Experimental assessment of emission models used for IC engine exhaust noise prediction. Experimental Thermal and Fluid Science, 30(2), 97-107. doi:10.1016/j.expthermflusci.2005.05.001 es_ES
dc.description.references J. Kim, M. Corsetti, L. Biundo, D. Dobson, R. Beason, Modeling and measuring exhaust backpressure resulting from flow restriction through an aftertreatment system, in: SAE Technical Paper, no. 2003-01-0939, SAE International, 2003. doi:10.4271/2003-01-0939. es_ES
dc.description.references M. Dixit, V. Sundaram, S. Kumar, A novel approach for flow simulation and back pressure prediction of cold end exhaust system, in: SAE Technical Paper, no. 2016-28-0235, SAE International, 2016. doi:10.4271/2016-28-0235. es_ES
dc.description.references D. Ukrop, M. Shanks, M. Carter, Predicting running vehicle exhaust back pressure in a laboratory using air flowing at room temperature and spreadsheet calculations, in: SAE Technical Paper, no. 2009-01-1154, SAE International, 2009. doi:10.4271/2009-01-1154. es_ES
dc.description.references F. Payri, A. Torregrosa, A. Broatch, J. Brunel, Pressure loss characterisation of perforated ducts, in: SAE Technical Paper, no. 980282, SAE International, 1998. doi:10.4271/980282. URL https://doi.org/10.4271/980282. es_ES
dc.description.references Persoons, T., Vanierschot, M., & Van den Bulck, E. (2008). Stereoscopic PIV measurements of swirling flow entering a catalyst substrate. Experimental Thermal and Fluid Science, 32(8), 1590-1596. doi:10.1016/j.expthermflusci.2008.04.011 es_ES
dc.description.references Persoons, T., Vanierschot, M., & Van den Bulck, E. (2008). Oblique inlet pressure loss for swirling flow entering a catalyst substrate. Experimental Thermal and Fluid Science, 32(6), 1222-1231. doi:10.1016/j.expthermflusci.2008.02.002 es_ES
dc.description.references Sutherland, W. (1893). LII. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223), 507-531. doi:10.1080/14786449308620508 es_ES
dc.description.references Crane Company. Engineering Division, Flow of fluids through valves, fittings, and pipe, Tech. Rep. TP-410 (1942). es_ES
dc.description.references Fisher, Control valve handbook, 4th Edition, Emerson Process Management, Marshalltown, Iowa 50158 USA, 2005. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem