Plötz, P., Gnann, T., Jochem, P., Yilmaz, H. Ü., & Kaschub, T. (2019). Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy, 130, 32-40. doi:10.1016/j.enpol.2019.03.042
Samsun, R. C., Krupp, C., Baltzer, S., Gnörich, B., Peters, R., & Stolten, D. (2016). A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations. Energy Conversion and Management, 127, 312-323. doi:10.1016/j.enconman.2016.09.025
Wang, E., Guo, D., & Yang, F. (2015). System design and energetic characterization of a four-wheel-driven series–parallel hybrid electric powertrain for heavy-duty applications. Energy Conversion and Management, 106, 1264-1275. doi:10.1016/j.enconman.2015.10.056
[+]
Plötz, P., Gnann, T., Jochem, P., Yilmaz, H. Ü., & Kaschub, T. (2019). Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy, 130, 32-40. doi:10.1016/j.enpol.2019.03.042
Samsun, R. C., Krupp, C., Baltzer, S., Gnörich, B., Peters, R., & Stolten, D. (2016). A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations. Energy Conversion and Management, 127, 312-323. doi:10.1016/j.enconman.2016.09.025
Wang, E., Guo, D., & Yang, F. (2015). System design and energetic characterization of a four-wheel-driven series–parallel hybrid electric powertrain for heavy-duty applications. Energy Conversion and Management, 106, 1264-1275. doi:10.1016/j.enconman.2015.10.056
Sen, B., Ercan, T., & Tatari, O. (2017). Does a battery-electric truck make a difference? – Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. Journal of Cleaner Production, 141, 110-121. doi:10.1016/j.jclepro.2016.09.046
García, A., Monsalve-Serrano, J., Martínez-Boggio, S., & Wittek, K. (2020). Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy, 195, 117039. doi:10.1016/j.energy.2020.117039
Banjac, T., Trenc, F., & Katrašnik, T. (2009). Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles. Energy Conversion and Management, 50(12), 2865-2878. doi:10.1016/j.enconman.2009.06.034
Mojtaba Lajevardi, S., Axsen, J., & Crawford, C. (2019). Comparing alternative heavy-duty drivetrains based on GHG emissions, ownership and abatement costs: Simulations of freight routes in British Columbia. Transportation Research Part D: Transport and Environment, 76, 19-55. doi:10.1016/j.trd.2019.08.031
Kim, D.-M., Benoliel, P., Kim, D.-K., Lee, T. H., Park, J. W., & Hong, J.-P. (2019). Framework Development of Series Hybrid Powertrain Design for Heavy-Duty Vehicle Considering Driving Conditions. IEEE Transactions on Vehicular Technology, 68(7), 6468-6480. doi:10.1109/tvt.2019.2914868
Mayet, C., Welles, J., Bouscayrol, A., Hofman, T., & Lemaire-Semail, B. (2019). Influence of a CVT on the fuel consumption of a parallel medium-duty electric hybrid truck. Mathematics and Computers in Simulation, 158, 120-129. doi:10.1016/j.matcom.2018.07.002
Lajunen, A. (2014). Fuel economy analysis of conventional and hybrid heavy vehicle combinations over real-world operating routes. Transportation Research Part D: Transport and Environment, 31, 70-84. doi:10.1016/j.trd.2014.05.023
Xu, G., Jia, M., Li, Y., Chang, Y., Liu, H., & Wang, T. (2019). Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range. Fuel, 253, 114-128. doi:10.1016/j.fuel.2019.05.020
Pedrozo, V. B., May, I., Guan, W., & Zhao, H. (2018). High efficiency ethanol-diesel dual-fuel combustion: A comparison against conventional diesel combustion from low to full engine load. Fuel, 230, 440-451. doi:10.1016/j.fuel.2018.05.034
Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003
Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548
Pachiannan, T., Zhong, W., Rajkumar, S., He, Z., Leng, X., & Wang, Q. (2019). A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Applied Energy, 251, 113380. doi:10.1016/j.apenergy.2019.113380
Abdul-Manan, A. F. N., Won, H.-W., Li, Y., Sarathy, S. M., Xie, X., & Amer, A. A. (2020). Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids. Applied Energy, 267, 114936. doi:10.1016/j.apenergy.2020.114936
Sun, R., Thomas, R. P., & Tang, X. (2012). HCCI Engine Application on a Hydraulic Hybrid Bus. SAE International Journal of Engines, 5(4), 1581-1594. doi:10.4271/2012-01-1631
Solouk, A., Shakiba-Herfeh, M., Arora, J., & Shahbakhti, M. (2018). Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization. Energy Conversion and Management, 155, 100-115. doi:10.1016/j.enconman.2017.10.073
Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010
Volvo T. VOLVO TRUCK SPECIFICATIONS n.d. https://www.volvotrucks.com/en-me/trucks/volvo-fl/specifications.html (accessed July 26, 2020).
Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010
Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2020). Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering, 164, 114430. doi:10.1016/j.applthermaleng.2019.114430
García, A., Carlucci, P., Monsalve-Serrano, J., Valletta, A., & Martínez-Boggio, S. (2020). Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion. Applied Energy, 272, 115191. doi:10.1016/j.apenergy.2020.115191
Forgez, C., Vinh Do, D., Friedrich, G., Morcrette, M., & Delacourt, C. (2010). Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. Journal of Power Sources, 195(9), 2961-2968. doi:10.1016/j.jpowsour.2009.10.105
Perez HE, Siegel JB, Lin X, Stefanopoulou AG, Ding Y, Castanier MP. Parameterization and Validation of an Integrated Electro-Thermal Cylindrical LFP Battery Model. Vol. 3 Renew. Energy Syst. Robot. Robust Control. Single Track Veh. Dyn. Control. Stoch. Model. Control Algorithms Robot. Struct. Dyn. Smart Struct., vol. 3, ASME; 2012, p. 41–50. doi:10.1115/DSCC2012-MOVIC2012-8782.
JSOL-Corporation. Motor design tool Jmag international 2020. https://www.jmag-international.com/express/ (accessed May 26, 2020).
Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987
Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144
Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082
Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2020). Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: Comparison to diesel-gasoline calibration. Energy Conversion and Management, 216, 112953. doi:10.1016/j.enconman.2020.112953
Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine. Energy Conversion and Management, 103, 1019-1030. doi:10.1016/j.enconman.2015.07.047
García, A., Monsalve-Serrano, J., Villalta, D., & Lago Sari, R. (2019). Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 184, 327-337. doi:10.1016/j.enconman.2019.01.069
Bao R, Stobart R. Study on Optimization of Regenerative Braking Control Strategy in Heavy-Duty Diesel Engine City Bus using Pneumatic Hybrid Technology. SAE Tech. Pap., vol. 1, 2014. doi:10.4271/2014-01-1807.
U.S. Department of Energy. Cost and Price Metrics for Automotive Lithium-Ion Batteries. Rep DOE/GO-102016-4908 2017:4.
Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016
[-]