- -

Dual fuel combustion and hybrid electric powertrains as potential solution to achieve 2025 emissions targets in medium duty trucks sector

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dual fuel combustion and hybrid electric powertrains as potential solution to achieve 2025 emissions targets in medium duty trucks sector

Mostrar el registro completo del ítem

García Martínez, A.; Monsalve-Serrano, J.; Martínez-Boggio, SD.; Gaillard, P.; Poussin, O.; Amer, AA. (2020). Dual fuel combustion and hybrid electric powertrains as potential solution to achieve 2025 emissions targets in medium duty trucks sector. Energy Conversion and Management. 224:1-22. https://doi.org/10.1016/j.enconman.2020.113320

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167746

Ficheros en el ítem

Metadatos del ítem

Título: Dual fuel combustion and hybrid electric powertrains as potential solution to achieve 2025 emissions targets in medium duty trucks sector
Autor: García Martínez, Antonio Monsalve-Serrano, Javier Martínez-Boggio, Santiago Daniel Gaillard, Patrick Poussin, Olivier Amer, Amer A.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] The European commission is targeting a 15% reduction in CO2 emissions for medium and heavy-duty transportation starting in 2025. Moreover, the next European normative (EU VII) will impose a decrease of 50% for NOx and ...[+]
Palabras clave: RCCI , Hybrid powertrain , Emissions regulations , Driving cycles
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Energy Conversion and Management. (issn: 0196-8904 )
DOI: 10.1016/j.enconman.2020.113320
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.enconman.2020.113320
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
info:eu-repo/grantAgreement/UPV//SP20180148/
Agradecimientos:
The authors thanks ARAMCO Overseas Company and VOLVO Group Trucks Technology for supporting this research. The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this ...[+]
Tipo: Artículo

References

Plötz, P., Gnann, T., Jochem, P., Yilmaz, H. Ü., & Kaschub, T. (2019). Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy, 130, 32-40. doi:10.1016/j.enpol.2019.03.042

Samsun, R. C., Krupp, C., Baltzer, S., Gnörich, B., Peters, R., & Stolten, D. (2016). A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations. Energy Conversion and Management, 127, 312-323. doi:10.1016/j.enconman.2016.09.025

Wang, E., Guo, D., & Yang, F. (2015). System design and energetic characterization of a four-wheel-driven series–parallel hybrid electric powertrain for heavy-duty applications. Energy Conversion and Management, 106, 1264-1275. doi:10.1016/j.enconman.2015.10.056 [+]
Plötz, P., Gnann, T., Jochem, P., Yilmaz, H. Ü., & Kaschub, T. (2019). Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy, 130, 32-40. doi:10.1016/j.enpol.2019.03.042

Samsun, R. C., Krupp, C., Baltzer, S., Gnörich, B., Peters, R., & Stolten, D. (2016). A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations. Energy Conversion and Management, 127, 312-323. doi:10.1016/j.enconman.2016.09.025

Wang, E., Guo, D., & Yang, F. (2015). System design and energetic characterization of a four-wheel-driven series–parallel hybrid electric powertrain for heavy-duty applications. Energy Conversion and Management, 106, 1264-1275. doi:10.1016/j.enconman.2015.10.056

Sen, B., Ercan, T., & Tatari, O. (2017). Does a battery-electric truck make a difference? – Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. Journal of Cleaner Production, 141, 110-121. doi:10.1016/j.jclepro.2016.09.046

García, A., Monsalve-Serrano, J., Martínez-Boggio, S., & Wittek, K. (2020). Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy, 195, 117039. doi:10.1016/j.energy.2020.117039

Banjac, T., Trenc, F., & Katrašnik, T. (2009). Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles. Energy Conversion and Management, 50(12), 2865-2878. doi:10.1016/j.enconman.2009.06.034

Mojtaba Lajevardi, S., Axsen, J., & Crawford, C. (2019). Comparing alternative heavy-duty drivetrains based on GHG emissions, ownership and abatement costs: Simulations of freight routes in British Columbia. Transportation Research Part D: Transport and Environment, 76, 19-55. doi:10.1016/j.trd.2019.08.031

Kim, D.-M., Benoliel, P., Kim, D.-K., Lee, T. H., Park, J. W., & Hong, J.-P. (2019). Framework Development of Series Hybrid Powertrain Design for Heavy-Duty Vehicle Considering Driving Conditions. IEEE Transactions on Vehicular Technology, 68(7), 6468-6480. doi:10.1109/tvt.2019.2914868

Mayet, C., Welles, J., Bouscayrol, A., Hofman, T., & Lemaire-Semail, B. (2019). Influence of a CVT on the fuel consumption of a parallel medium-duty electric hybrid truck. Mathematics and Computers in Simulation, 158, 120-129. doi:10.1016/j.matcom.2018.07.002

Lajunen, A. (2014). Fuel economy analysis of conventional and hybrid heavy vehicle combinations over real-world operating routes. Transportation Research Part D: Transport and Environment, 31, 70-84. doi:10.1016/j.trd.2014.05.023

Xu, G., Jia, M., Li, Y., Chang, Y., Liu, H., & Wang, T. (2019). Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range. Fuel, 253, 114-128. doi:10.1016/j.fuel.2019.05.020

Pedrozo, V. B., May, I., Guan, W., & Zhao, H. (2018). High efficiency ethanol-diesel dual-fuel combustion: A comparison against conventional diesel combustion from low to full engine load. Fuel, 230, 440-451. doi:10.1016/j.fuel.2018.05.034

Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003

Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548

Pachiannan, T., Zhong, W., Rajkumar, S., He, Z., Leng, X., & Wang, Q. (2019). A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Applied Energy, 251, 113380. doi:10.1016/j.apenergy.2019.113380

Abdul-Manan, A. F. N., Won, H.-W., Li, Y., Sarathy, S. M., Xie, X., & Amer, A. A. (2020). Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids. Applied Energy, 267, 114936. doi:10.1016/j.apenergy.2020.114936

Sun, R., Thomas, R. P., & Tang, X. (2012). HCCI Engine Application on a Hydraulic Hybrid Bus. SAE International Journal of Engines, 5(4), 1581-1594. doi:10.4271/2012-01-1631

Solouk, A., Shakiba-Herfeh, M., Arora, J., & Shahbakhti, M. (2018). Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization. Energy Conversion and Management, 155, 100-115. doi:10.1016/j.enconman.2017.10.073

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010

Volvo T. VOLVO TRUCK SPECIFICATIONS n.d. https://www.volvotrucks.com/en-me/trucks/volvo-fl/specifications.html (accessed July 26, 2020).

Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010

Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2020). Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering, 164, 114430. doi:10.1016/j.applthermaleng.2019.114430

García, A., Carlucci, P., Monsalve-Serrano, J., Valletta, A., & Martínez-Boggio, S. (2020). Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion. Applied Energy, 272, 115191. doi:10.1016/j.apenergy.2020.115191

Forgez, C., Vinh Do, D., Friedrich, G., Morcrette, M., & Delacourt, C. (2010). Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. Journal of Power Sources, 195(9), 2961-2968. doi:10.1016/j.jpowsour.2009.10.105

Perez HE, Siegel JB, Lin X, Stefanopoulou AG, Ding Y, Castanier MP. Parameterization and Validation of an Integrated Electro-Thermal Cylindrical LFP Battery Model. Vol. 3 Renew. Energy Syst. Robot. Robust Control. Single Track Veh. Dyn. Control. Stoch. Model. Control Algorithms Robot. Struct. Dyn. Smart Struct., vol. 3, ASME; 2012, p. 41–50. doi:10.1115/DSCC2012-MOVIC2012-8782.

JSOL-Corporation. Motor design tool Jmag international 2020. https://www.jmag-international.com/express/ (accessed May 26, 2020).

Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987

Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144

Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082

Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2020). Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: Comparison to diesel-gasoline calibration. Energy Conversion and Management, 216, 112953. doi:10.1016/j.enconman.2020.112953

Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine. Energy Conversion and Management, 103, 1019-1030. doi:10.1016/j.enconman.2015.07.047

García, A., Monsalve-Serrano, J., Villalta, D., & Lago Sari, R. (2019). Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 184, 327-337. doi:10.1016/j.enconman.2019.01.069

Bao R, Stobart R. Study on Optimization of Regenerative Braking Control Strategy in Heavy-Duty Diesel Engine City Bus using Pneumatic Hybrid Technology. SAE Tech. Pap., vol. 1, 2014. doi:10.4271/2014-01-1807.

U.S. Department of Energy. Cost and Price Metrics for Automotive Lithium-Ion Batteries. Rep DOE/GO-102016-4908 2017:4.

Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem