Mostrar el registro sencillo del ítem
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | Monsalve-Serrano, Javier | es_ES |
dc.contributor.author | Martínez-Boggio, Santiago Daniel | es_ES |
dc.contributor.author | Gaillard, Patrick | es_ES |
dc.contributor.author | Poussin, Olivier | es_ES |
dc.contributor.author | Amer, Amer A. | es_ES |
dc.date.accessioned | 2021-06-10T03:32:30Z | |
dc.date.available | 2021-06-10T03:32:30Z | |
dc.date.issued | 2020-11-15 | es_ES |
dc.identifier.issn | 0196-8904 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167746 | |
dc.description.abstract | [EN] The European commission is targeting a 15% reduction in CO2 emissions for medium and heavy-duty transportation starting in 2025. Moreover, the next European normative (EU VII) will impose a decrease of 50% for NOx and particulate matter emissions with respect to the current EUVI normative. Meeting these requirements pose a significant challenge to truck and bus manufacturers. Several proposals appeared in the last few years as improve the cabin aerodynamics, decrease the friction losses and improve the powertrain efficiency. The last point involves improving the current combustion systems as well as the transmission and energy management. This work proposes to couple two potential technologies to reduce at the same time the global (CO2) and local pollution (NOx and soot). For this, two truck platforms representative of medium-duty applications (18 ton and 25 ton) are tested using the reactivity controlled compression ignition (RCCI) combustion mode with diesel and gasoline as fuels. In addition, the trucks are electrified to full hybrid technology in a parallel pre-transmission (P2) architecture. A 0D vehicle numerical model is used to evaluate the trucks under four different driving cycles representative of homologation and real driving conditions. The numerical model is validated against on road measurements. The RCCI combustion is modeled by means of a map-based approach with 54 points measured in steady-state conditions. This work presents a complete engine map calibration with measurements up to 350 hp using two combustion modes inside the map (so-called dual-mode dual-fuel). As a baseline, the commercial diesel no-hybrid trucks and the dual-fuel no-hybrid trucks are used. The results show the potential of the dual-mode dual-fuel combustion to achieve ultra-low NOx and soot emissions. In addition, the CO2 target reduction is achieved for several truck platforms and driving conditions due to the hybridization of the driveline. The cycles with large phases of urban driving are the most favorable due to the ability of recovering energy by means of the regenerative braking system and the possibility to avoid large idling phases with respect to the no-hybrid versions. In addition, the decrease of the payload improves the CO2 reduction with respect to the baseline cases. | es_ES |
dc.description.sponsorship | The authors thanks ARAMCO Overseas Company and VOLVO Group Trucks Technology for supporting this research. The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Polit`ecnica de Val`encia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (PAID-06-18). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Energy Conversion and Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | RCCI | es_ES |
dc.subject | Hybrid powertrain | es_ES |
dc.subject | Emissions regulations | es_ES |
dc.subject | Driving cycles | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Dual fuel combustion and hybrid electric powertrains as potential solution to achieve 2025 emissions targets in medium duty trucks sector | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.enconman.2020.113320 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180148/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | García Martínez, A.; Monsalve-Serrano, J.; Martínez-Boggio, SD.; Gaillard, P.; Poussin, O.; Amer, AA. (2020). Dual fuel combustion and hybrid electric powertrains as potential solution to achieve 2025 emissions targets in medium duty trucks sector. Energy Conversion and Management. 224:1-22. https://doi.org/10.1016/j.enconman.2020.113320 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.enconman.2020.113320 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 224 | es_ES |
dc.relation.pasarela | S\417341 | es_ES |
dc.contributor.funder | ARAMCO Overseas Company | es_ES |
dc.contributor.funder | Volvo Group Trucks Technology | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Plötz, P., Gnann, T., Jochem, P., Yilmaz, H. Ü., & Kaschub, T. (2019). Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy, 130, 32-40. doi:10.1016/j.enpol.2019.03.042 | es_ES |
dc.description.references | Samsun, R. C., Krupp, C., Baltzer, S., Gnörich, B., Peters, R., & Stolten, D. (2016). A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations. Energy Conversion and Management, 127, 312-323. doi:10.1016/j.enconman.2016.09.025 | es_ES |
dc.description.references | Wang, E., Guo, D., & Yang, F. (2015). System design and energetic characterization of a four-wheel-driven series–parallel hybrid electric powertrain for heavy-duty applications. Energy Conversion and Management, 106, 1264-1275. doi:10.1016/j.enconman.2015.10.056 | es_ES |
dc.description.references | Sen, B., Ercan, T., & Tatari, O. (2017). Does a battery-electric truck make a difference? – Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. Journal of Cleaner Production, 141, 110-121. doi:10.1016/j.jclepro.2016.09.046 | es_ES |
dc.description.references | García, A., Monsalve-Serrano, J., Martínez-Boggio, S., & Wittek, K. (2020). Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy, 195, 117039. doi:10.1016/j.energy.2020.117039 | es_ES |
dc.description.references | Banjac, T., Trenc, F., & Katrašnik, T. (2009). Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles. Energy Conversion and Management, 50(12), 2865-2878. doi:10.1016/j.enconman.2009.06.034 | es_ES |
dc.description.references | Mojtaba Lajevardi, S., Axsen, J., & Crawford, C. (2019). Comparing alternative heavy-duty drivetrains based on GHG emissions, ownership and abatement costs: Simulations of freight routes in British Columbia. Transportation Research Part D: Transport and Environment, 76, 19-55. doi:10.1016/j.trd.2019.08.031 | es_ES |
dc.description.references | Kim, D.-M., Benoliel, P., Kim, D.-K., Lee, T. H., Park, J. W., & Hong, J.-P. (2019). Framework Development of Series Hybrid Powertrain Design for Heavy-Duty Vehicle Considering Driving Conditions. IEEE Transactions on Vehicular Technology, 68(7), 6468-6480. doi:10.1109/tvt.2019.2914868 | es_ES |
dc.description.references | Mayet, C., Welles, J., Bouscayrol, A., Hofman, T., & Lemaire-Semail, B. (2019). Influence of a CVT on the fuel consumption of a parallel medium-duty electric hybrid truck. Mathematics and Computers in Simulation, 158, 120-129. doi:10.1016/j.matcom.2018.07.002 | es_ES |
dc.description.references | Lajunen, A. (2014). Fuel economy analysis of conventional and hybrid heavy vehicle combinations over real-world operating routes. Transportation Research Part D: Transport and Environment, 31, 70-84. doi:10.1016/j.trd.2014.05.023 | es_ES |
dc.description.references | Xu, G., Jia, M., Li, Y., Chang, Y., Liu, H., & Wang, T. (2019). Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range. Fuel, 253, 114-128. doi:10.1016/j.fuel.2019.05.020 | es_ES |
dc.description.references | Pedrozo, V. B., May, I., Guan, W., & Zhao, H. (2018). High efficiency ethanol-diesel dual-fuel combustion: A comparison against conventional diesel combustion from low to full engine load. Fuel, 230, 440-451. doi:10.1016/j.fuel.2018.05.034 | es_ES |
dc.description.references | Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 | es_ES |
dc.description.references | Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548 | es_ES |
dc.description.references | Pachiannan, T., Zhong, W., Rajkumar, S., He, Z., Leng, X., & Wang, Q. (2019). A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Applied Energy, 251, 113380. doi:10.1016/j.apenergy.2019.113380 | es_ES |
dc.description.references | Abdul-Manan, A. F. N., Won, H.-W., Li, Y., Sarathy, S. M., Xie, X., & Amer, A. A. (2020). Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids. Applied Energy, 267, 114936. doi:10.1016/j.apenergy.2020.114936 | es_ES |
dc.description.references | Sun, R., Thomas, R. P., & Tang, X. (2012). HCCI Engine Application on a Hydraulic Hybrid Bus. SAE International Journal of Engines, 5(4), 1581-1594. doi:10.4271/2012-01-1631 | es_ES |
dc.description.references | Solouk, A., Shakiba-Herfeh, M., Arora, J., & Shahbakhti, M. (2018). Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization. Energy Conversion and Management, 155, 100-115. doi:10.1016/j.enconman.2017.10.073 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010 | es_ES |
dc.description.references | Volvo T. VOLVO TRUCK SPECIFICATIONS n.d. https://www.volvotrucks.com/en-me/trucks/volvo-fl/specifications.html (accessed July 26, 2020). | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2020). Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering, 164, 114430. doi:10.1016/j.applthermaleng.2019.114430 | es_ES |
dc.description.references | García, A., Carlucci, P., Monsalve-Serrano, J., Valletta, A., & Martínez-Boggio, S. (2020). Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion. Applied Energy, 272, 115191. doi:10.1016/j.apenergy.2020.115191 | es_ES |
dc.description.references | Forgez, C., Vinh Do, D., Friedrich, G., Morcrette, M., & Delacourt, C. (2010). Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. Journal of Power Sources, 195(9), 2961-2968. doi:10.1016/j.jpowsour.2009.10.105 | es_ES |
dc.description.references | Perez HE, Siegel JB, Lin X, Stefanopoulou AG, Ding Y, Castanier MP. Parameterization and Validation of an Integrated Electro-Thermal Cylindrical LFP Battery Model. Vol. 3 Renew. Energy Syst. Robot. Robust Control. Single Track Veh. Dyn. Control. Stoch. Model. Control Algorithms Robot. Struct. Dyn. Smart Struct., vol. 3, ASME; 2012, p. 41–50. doi:10.1115/DSCC2012-MOVIC2012-8782. | es_ES |
dc.description.references | JSOL-Corporation. Motor design tool Jmag international 2020. https://www.jmag-international.com/express/ (accessed May 26, 2020). | es_ES |
dc.description.references | Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 | es_ES |
dc.description.references | Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2020). Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: Comparison to diesel-gasoline calibration. Energy Conversion and Management, 216, 112953. doi:10.1016/j.enconman.2020.112953 | es_ES |
dc.description.references | Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine. Energy Conversion and Management, 103, 1019-1030. doi:10.1016/j.enconman.2015.07.047 | es_ES |
dc.description.references | García, A., Monsalve-Serrano, J., Villalta, D., & Lago Sari, R. (2019). Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 184, 327-337. doi:10.1016/j.enconman.2019.01.069 | es_ES |
dc.description.references | Bao R, Stobart R. Study on Optimization of Regenerative Braking Control Strategy in Heavy-Duty Diesel Engine City Bus using Pneumatic Hybrid Technology. SAE Tech. Pap., vol. 1, 2014. doi:10.4271/2014-01-1807. | es_ES |
dc.description.references | U.S. Department of Energy. Cost and Price Metrics for Automotive Lithium-Ion Batteries. Rep DOE/GO-102016-4908 2017:4. | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016 | es_ES |