- -

Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pellicer-Valero, Oscar J. es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.contributor.author Martinez-Sanchis, Sandra es_ES
dc.contributor.author Martín-Guerrero, José D. es_ES
dc.date.accessioned 2021-06-12T03:32:40Z
dc.date.available 2021-06-12T03:32:40Z
dc.date.issued 2020-04-01 es_ES
dc.identifier.issn 0957-4174 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167836
dc.description.abstract [EN] The development of accurate real-time models of the biomechanical behavior of different organs and tissues still poses a challenge in the field of biomechanical engineering. In the case of the liver, specifically, such a model would constitute a great leap forward in the implementation of complex applications such as surgical simulators, computed-assisted surgery or guided tumor irradiation. In this work, a relatively novel approach for developing such a model is presented. It consists in the use of a machine learning algorithm, which provides real-time inference, trained on tens of thousands of simulations of the biomechanical behavior of the liver carried out by the finite element method on more than 100 different liver geometries. Considering a target accuracy threshold of 3 mm for the Euclidean Error, four different scenarios were modeled and assessed: a single liver with an arbitrary force applied (99.96% of samples within the accepted error range), a single liver with two simultaneous forces applied (99.84% samples in range), a single liver with different material properties and an arbitrary force applied (98.46% samples in range), and a much more general model capable of modeling the behavior of any liver with an arbitrary force applied (99.01% samples in range for the median liver). The results show that the Machine Learning models perform extremely well on all the scenarios, managing to keep the Mean Euclidean Error under 1 mm in all cases. Furthermore, the proposed model achieves working frequencies above 100Hz on modest hardware (with frequencies above 1000Hz being easily achievable on more powerful GPUs) thus fulfilling the real-time requirements. These results constitute a remarkable improvement in this field and may involve a prompt implementation in clinical practice. es_ES
dc.description.sponsorship This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through research projects TIN2014-52033-R, also supported by European FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Machine learning es_ES
dc.subject Finite element method Real time es_ES
dc.subject Liver es_ES
dc.subject Coherent point drift es_ES
dc.subject Biomechanical modeling es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2019.113083 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-52033-R/ES/SIMULACION DEL COMPORTAMIENTO BIOMECANICO DEL TEJIDO BLANDO EN TIEMPO REAL MEDIANTE INTELIGENCIA COMPUTACIONAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Pellicer-Valero, OJ.; Rupérez Moreno, MJ.; Martinez-Sanchis, S.; Martín-Guerrero, JD. (2020). Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations. Expert Systems with Applications. 143:1-12. https://doi.org/10.1016/j.eswa.2019.113083 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eswa.2019.113083 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 143 es_ES
dc.relation.pasarela S\402470 es_ES
dc.description.references Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., & Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. arXiv:1605.08695. es_ES
dc.description.references Brunon, A., Bruyère-Garnier, K., & Coret, M. (2010). Mechanical characterization of liver capsule through uniaxial quasi-static tensile tests until failure. Journal of Biomechanics, 43(11), 2221-2227. doi:10.1016/j.jbiomech.2010.03.038 es_ES
dc.description.references Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x es_ES
dc.description.references Clifford, M. A., Banovac, F., Levy, E., & Cleary, K. (2002). Assessment of Hepatic Motion Secondary to Respiration for Computer Assisted Interventions. Computer Aided Surgery, 7(5), 291-299. doi:10.3109/10929080209146038 es_ES
dc.description.references Cotin, S., Delingette, H., & Ayache, N. (2000). A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. The Visual Computer, 16(8), 437-452. doi:10.1007/pl00007215 es_ES
dc.description.references Duysak, A., Zhang, J. J., & Ilankovan, V. (2003). Efficient modelling and simulation of soft tissue deformation using mass-spring systems. International Congress Series, 1256, 337-342. doi:10.1016/s0531-5131(03)00423-0 es_ES
dc.description.references Fung, Y. C., & Skalak, R. (1981). Biomechanics: Mechanical Properties of Living Tissues. Journal of Biomechanical Engineering, 103(4), 231-298. doi:10.1115/1.3138285 es_ES
dc.description.references González, D., Aguado, J. V., Cueto, E., Abisset-Chavanne, E., & Chinesta, F. (2016). kPCA-Based Parametric Solutions Within the PGD Framework. Archives of Computational Methods in Engineering, 25(1), 69-86. doi:10.1007/s11831-016-9173-4 es_ES
dc.description.references González, D., Cueto, E., & Chinesta, F. (2015). Computational Patient Avatars for Surgery Planning. Annals of Biomedical Engineering, 44(1), 35-45. doi:10.1007/s10439-015-1362-z es_ES
dc.description.references Jahya, A., Herink, M., & Misra, S. (2013). A framework for predicting three-dimensional prostate deformation in real time. The International Journal of Medical Robotics and Computer Assisted Surgery, 9(4), e52-e60. doi:10.1002/rcs.1493 es_ES
dc.description.references Lister, K., Gao, Z., & Desai, J. P. (2010). Development of In Vivo Constitutive Models for Liver: Application to Surgical Simulation. Annals of Biomedical Engineering, 39(3), 1060-1073. doi:10.1007/s10439-010-0227-8 es_ES
dc.description.references Lorente, D., Martínez-Martínez, F., Rupérez, M. J., Lago, M. A., Martínez-Sober, M., Escandell-Montero, P., … Martín-Guerrero, J. D. (2017). A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. Expert Systems with Applications, 71, 342-357. doi:10.1016/j.eswa.2016.11.037 es_ES
dc.description.references Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694 es_ES
dc.description.references Myronenko, A., & Xubo Song. (2010). Point Set Registration: Coherent Point Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262-2275. doi:10.1109/tpami.2010.46 es_ES
dc.description.references Niroomandi, S., Alfaro, I., Cueto, E., & Chinesta, F. (2012). Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Computer Methods and Programs in Biomedicine, 105(1), 1-12. doi:10.1016/j.cmpb.2010.06.012 es_ES
dc.description.references Plantefève, R., Peterlik, I., Haouchine, N., & Cotin, S. (2015). Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery. Annals of Biomedical Engineering, 44(1), 139-153. doi:10.1007/s10439-015-1419-z es_ES
dc.description.references Large elastic deformations of isotropic materials. I. Fundamental concepts. (1948). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(822), 459-490. doi:10.1098/rsta.1948.0002 es_ES
dc.description.references Large elastic deformations of isotropic materials IV. further developments of the general theory. (1948). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379-397. doi:10.1098/rsta.1948.0024 es_ES
dc.description.references Ruder, S. (2016). An overview of gradient descent optimization algorithms. (pp. 1–14). arXiv: 1609.04747. es_ES
dc.description.references Untaroiu, C. D., & Lu, Y.-C. (2013). Material characterization of liver parenchyma using specimen-specific finite element models. Journal of the Mechanical Behavior of Biomedical Materials, 26, 11-22. doi:10.1016/j.jmbbm.2013.05.013 es_ES
dc.description.references Valanis, K. C., & Landel, R. F. (1967). The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios. Journal of Applied Physics, 38(7), 2997-3002. doi:10.1063/1.1710039 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem