Mostrar el registro sencillo del ítem
dc.contributor.author | Pellicer-Valero, Oscar J. | es_ES |
dc.contributor.author | Rupérez Moreno, María José | es_ES |
dc.contributor.author | Martinez-Sanchis, Sandra | es_ES |
dc.contributor.author | Martín-Guerrero, José D. | es_ES |
dc.date.accessioned | 2021-06-12T03:32:40Z | |
dc.date.available | 2021-06-12T03:32:40Z | |
dc.date.issued | 2020-04-01 | es_ES |
dc.identifier.issn | 0957-4174 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167836 | |
dc.description.abstract | [EN] The development of accurate real-time models of the biomechanical behavior of different organs and tissues still poses a challenge in the field of biomechanical engineering. In the case of the liver, specifically, such a model would constitute a great leap forward in the implementation of complex applications such as surgical simulators, computed-assisted surgery or guided tumor irradiation. In this work, a relatively novel approach for developing such a model is presented. It consists in the use of a machine learning algorithm, which provides real-time inference, trained on tens of thousands of simulations of the biomechanical behavior of the liver carried out by the finite element method on more than 100 different liver geometries. Considering a target accuracy threshold of 3 mm for the Euclidean Error, four different scenarios were modeled and assessed: a single liver with an arbitrary force applied (99.96% of samples within the accepted error range), a single liver with two simultaneous forces applied (99.84% samples in range), a single liver with different material properties and an arbitrary force applied (98.46% samples in range), and a much more general model capable of modeling the behavior of any liver with an arbitrary force applied (99.01% samples in range for the median liver). The results show that the Machine Learning models perform extremely well on all the scenarios, managing to keep the Mean Euclidean Error under 1 mm in all cases. Furthermore, the proposed model achieves working frequencies above 100Hz on modest hardware (with frequencies above 1000Hz being easily achievable on more powerful GPUs) thus fulfilling the real-time requirements. These results constitute a remarkable improvement in this field and may involve a prompt implementation in clinical practice. | es_ES |
dc.description.sponsorship | This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through research projects TIN2014-52033-R, also supported by European FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Expert Systems with Applications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Finite element method Real time | es_ES |
dc.subject | Liver | es_ES |
dc.subject | Coherent point drift | es_ES |
dc.subject | Biomechanical modeling | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.eswa.2019.113083 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-52033-R/ES/SIMULACION DEL COMPORTAMIENTO BIOMECANICO DEL TEJIDO BLANDO EN TIEMPO REAL MEDIANTE INTELIGENCIA COMPUTACIONAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Pellicer-Valero, OJ.; Rupérez Moreno, MJ.; Martinez-Sanchis, S.; Martín-Guerrero, JD. (2020). Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations. Expert Systems with Applications. 143:1-12. https://doi.org/10.1016/j.eswa.2019.113083 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.eswa.2019.113083 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 143 | es_ES |
dc.relation.pasarela | S\402470 | es_ES |
dc.description.references | Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., & Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. arXiv:1605.08695. | es_ES |
dc.description.references | Brunon, A., Bruyère-Garnier, K., & Coret, M. (2010). Mechanical characterization of liver capsule through uniaxial quasi-static tensile tests until failure. Journal of Biomechanics, 43(11), 2221-2227. doi:10.1016/j.jbiomech.2010.03.038 | es_ES |
dc.description.references | Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x | es_ES |
dc.description.references | Clifford, M. A., Banovac, F., Levy, E., & Cleary, K. (2002). Assessment of Hepatic Motion Secondary to Respiration for Computer Assisted Interventions. Computer Aided Surgery, 7(5), 291-299. doi:10.3109/10929080209146038 | es_ES |
dc.description.references | Cotin, S., Delingette, H., & Ayache, N. (2000). A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. The Visual Computer, 16(8), 437-452. doi:10.1007/pl00007215 | es_ES |
dc.description.references | Duysak, A., Zhang, J. J., & Ilankovan, V. (2003). Efficient modelling and simulation of soft tissue deformation using mass-spring systems. International Congress Series, 1256, 337-342. doi:10.1016/s0531-5131(03)00423-0 | es_ES |
dc.description.references | Fung, Y. C., & Skalak, R. (1981). Biomechanics: Mechanical Properties of Living Tissues. Journal of Biomechanical Engineering, 103(4), 231-298. doi:10.1115/1.3138285 | es_ES |
dc.description.references | González, D., Aguado, J. V., Cueto, E., Abisset-Chavanne, E., & Chinesta, F. (2016). kPCA-Based Parametric Solutions Within the PGD Framework. Archives of Computational Methods in Engineering, 25(1), 69-86. doi:10.1007/s11831-016-9173-4 | es_ES |
dc.description.references | González, D., Cueto, E., & Chinesta, F. (2015). Computational Patient Avatars for Surgery Planning. Annals of Biomedical Engineering, 44(1), 35-45. doi:10.1007/s10439-015-1362-z | es_ES |
dc.description.references | Jahya, A., Herink, M., & Misra, S. (2013). A framework for predicting three-dimensional prostate deformation in real time. The International Journal of Medical Robotics and Computer Assisted Surgery, 9(4), e52-e60. doi:10.1002/rcs.1493 | es_ES |
dc.description.references | Lister, K., Gao, Z., & Desai, J. P. (2010). Development of In Vivo Constitutive Models for Liver: Application to Surgical Simulation. Annals of Biomedical Engineering, 39(3), 1060-1073. doi:10.1007/s10439-010-0227-8 | es_ES |
dc.description.references | Lorente, D., Martínez-Martínez, F., Rupérez, M. J., Lago, M. A., Martínez-Sober, M., Escandell-Montero, P., … Martín-Guerrero, J. D. (2017). A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. Expert Systems with Applications, 71, 342-357. doi:10.1016/j.eswa.2016.11.037 | es_ES |
dc.description.references | Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694 | es_ES |
dc.description.references | Myronenko, A., & Xubo Song. (2010). Point Set Registration: Coherent Point Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262-2275. doi:10.1109/tpami.2010.46 | es_ES |
dc.description.references | Niroomandi, S., Alfaro, I., Cueto, E., & Chinesta, F. (2012). Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Computer Methods and Programs in Biomedicine, 105(1), 1-12. doi:10.1016/j.cmpb.2010.06.012 | es_ES |
dc.description.references | Plantefève, R., Peterlik, I., Haouchine, N., & Cotin, S. (2015). Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery. Annals of Biomedical Engineering, 44(1), 139-153. doi:10.1007/s10439-015-1419-z | es_ES |
dc.description.references | Large elastic deformations of isotropic materials. I. Fundamental concepts. (1948). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(822), 459-490. doi:10.1098/rsta.1948.0002 | es_ES |
dc.description.references | Large elastic deformations of isotropic materials IV. further developments of the general theory. (1948). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379-397. doi:10.1098/rsta.1948.0024 | es_ES |
dc.description.references | Ruder, S. (2016). An overview of gradient descent optimization algorithms. (pp. 1–14). arXiv: 1609.04747. | es_ES |
dc.description.references | Untaroiu, C. D., & Lu, Y.-C. (2013). Material characterization of liver parenchyma using specimen-specific finite element models. Journal of the Mechanical Behavior of Biomedical Materials, 26, 11-22. doi:10.1016/j.jmbbm.2013.05.013 | es_ES |
dc.description.references | Valanis, K. C., & Landel, R. F. (1967). The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios. Journal of Applied Physics, 38(7), 2997-3002. doi:10.1063/1.1710039 | es_ES |