- -

Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations

Mostrar el registro completo del ítem

Pellicer-Valero, OJ.; Rupérez Moreno, MJ.; Martinez-Sanchis, S.; Martín-Guerrero, JD. (2020). Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations. Expert Systems with Applications. 143:1-12. https://doi.org/10.1016/j.eswa.2019.113083

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167836

Ficheros en el ítem

Metadatos del ítem

Título: Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations
Autor: Pellicer-Valero, Oscar J. Rupérez Moreno, María José Martinez-Sanchis, Sandra Martín-Guerrero, José D.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] The development of accurate real-time models of the biomechanical behavior of different organs and tissues still poses a challenge in the field of biomechanical engineering. In the case of the liver, specifically, ...[+]
Palabras clave: Machine learning , Finite element method Real time , Liver , Coherent point drift , Biomechanical modeling
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Expert Systems with Applications. (issn: 0957-4174 )
DOI: 10.1016/j.eswa.2019.113083
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.eswa.2019.113083
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-52033-R/ES/SIMULACION DEL COMPORTAMIENTO BIOMECANICO DEL TEJIDO BLANDO EN TIEMPO REAL MEDIANTE INTELIGENCIA COMPUTACIONAL/
Agradecimientos:
This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through research projects TIN2014-52033-R, also supported by European FEDER funds.
Tipo: Artículo

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., & Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. arXiv:1605.08695.

Brunon, A., Bruyère-Garnier, K., & Coret, M. (2010). Mechanical characterization of liver capsule through uniaxial quasi-static tensile tests until failure. Journal of Biomechanics, 43(11), 2221-2227. doi:10.1016/j.jbiomech.2010.03.038

Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x [+]
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., & Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. arXiv:1605.08695.

Brunon, A., Bruyère-Garnier, K., & Coret, M. (2010). Mechanical characterization of liver capsule through uniaxial quasi-static tensile tests until failure. Journal of Biomechanics, 43(11), 2221-2227. doi:10.1016/j.jbiomech.2010.03.038

Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x

Clifford, M. A., Banovac, F., Levy, E., & Cleary, K. (2002). Assessment of Hepatic Motion Secondary to Respiration for Computer Assisted Interventions. Computer Aided Surgery, 7(5), 291-299. doi:10.3109/10929080209146038

Cotin, S., Delingette, H., & Ayache, N. (2000). A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. The Visual Computer, 16(8), 437-452. doi:10.1007/pl00007215

Duysak, A., Zhang, J. J., & Ilankovan, V. (2003). Efficient modelling and simulation of soft tissue deformation using mass-spring systems. International Congress Series, 1256, 337-342. doi:10.1016/s0531-5131(03)00423-0

Fung, Y. C., & Skalak, R. (1981). Biomechanics: Mechanical Properties of Living Tissues. Journal of Biomechanical Engineering, 103(4), 231-298. doi:10.1115/1.3138285

González, D., Aguado, J. V., Cueto, E., Abisset-Chavanne, E., & Chinesta, F. (2016). kPCA-Based Parametric Solutions Within the PGD Framework. Archives of Computational Methods in Engineering, 25(1), 69-86. doi:10.1007/s11831-016-9173-4

González, D., Cueto, E., & Chinesta, F. (2015). Computational Patient Avatars for Surgery Planning. Annals of Biomedical Engineering, 44(1), 35-45. doi:10.1007/s10439-015-1362-z

Jahya, A., Herink, M., & Misra, S. (2013). A framework for predicting three-dimensional prostate deformation in real time. The International Journal of Medical Robotics and Computer Assisted Surgery, 9(4), e52-e60. doi:10.1002/rcs.1493

Lister, K., Gao, Z., & Desai, J. P. (2010). Development of In Vivo Constitutive Models for Liver: Application to Surgical Simulation. Annals of Biomedical Engineering, 39(3), 1060-1073. doi:10.1007/s10439-010-0227-8

Lorente, D., Martínez-Martínez, F., Rupérez, M. J., Lago, M. A., Martínez-Sober, M., Escandell-Montero, P., … Martín-Guerrero, J. D. (2017). A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. Expert Systems with Applications, 71, 342-357. doi:10.1016/j.eswa.2016.11.037

Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694

Myronenko, A., & Xubo Song. (2010). Point Set Registration: Coherent Point Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262-2275. doi:10.1109/tpami.2010.46

Niroomandi, S., Alfaro, I., Cueto, E., & Chinesta, F. (2012). Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Computer Methods and Programs in Biomedicine, 105(1), 1-12. doi:10.1016/j.cmpb.2010.06.012

Plantefève, R., Peterlik, I., Haouchine, N., & Cotin, S. (2015). Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery. Annals of Biomedical Engineering, 44(1), 139-153. doi:10.1007/s10439-015-1419-z

Large elastic deformations of isotropic materials. I. Fundamental concepts. (1948). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(822), 459-490. doi:10.1098/rsta.1948.0002

Large elastic deformations of isotropic materials IV. further developments of the general theory. (1948). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379-397. doi:10.1098/rsta.1948.0024

Ruder, S. (2016). An overview of gradient descent optimization algorithms. (pp. 1–14). arXiv: 1609.04747.

Untaroiu, C. D., & Lu, Y.-C. (2013). Material characterization of liver parenchyma using specimen-specific finite element models. Journal of the Mechanical Behavior of Biomedical Materials, 26, 11-22. doi:10.1016/j.jmbbm.2013.05.013

Valanis, K. C., & Landel, R. F. (1967). The Strain‐Energy Function of a Hyperelastic Material in Terms of the Extension Ratios. Journal of Applied Physics, 38(7), 2997-3002. doi:10.1063/1.1710039

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem