- -

Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author CHILLARÓN-PÉREZ, MÓNICA es_ES
dc.contributor.author Vidal-Gimeno, Vicente-Emilio es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-06-12T03:32:51Z
dc.date.available 2021-06-12T03:32:51Z
dc.date.issued 2020-03-03 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167841
dc.description.abstract [EN] In CT (computerized tomography) imaging reconstruction, the acquired sinograms are usually noisy, so artifacts will appear on the resulting images. Thus, it is necessary to find the adequate filters to combine with reconstruction methods that eliminate the greater amount of noise possible without altering in excess the information that the image contains. The present work is focused on the evaluation of several filtering techniques applied in the elimination of artifacts present in CT sinograms. In particular, we analyze the elimination of Gaussian and Speckle noise. The chosen filtering techniques have been studied using four functions designed to measure the quality of the filtered image and compare it with a reference image. In this way, we determine the ideal parameters to carry out the filtering process on the sinograms, prior to the process of reconstruction of the images. Moreover, we study their application on reconstructed noisy images when using noisy sinograms and finally we select the best filter to combine with an iterative reconstruction method in order to test if it improves the quality of the images. With this, we can determine the feasibility of using the selected filtering method for our CT reconstructions with projections reduction, concluding that the bilateral filter is the filter that behaves best with our images. We will test it when combined with our iterative reconstruction method, which consists on the Least Squares QR method in combination with a regularization technique and an acceleration step, showing how integrating this filter with our reconstruction method improves the quality of the CT images. es_ES
dc.description.sponsorship This research has been supported by "Universitat Politecnica de Valencia", "Generalitat Valenciana" under PROMETEO/2018/035 as well as ACIF/2017/075 predoctoral grant co-financed by FEDER and FSE funds, and "Spanish Ministry of Science, Innovation and Universities" under Grant RTI2018-098156-B-C54 co-financed by FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CT es_ES
dc.subject Algorithm es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0229113 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F075/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Chillarón-Pérez, M.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2020). Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method. PLoS ONE. 15(3):1-14. https://doi.org/10.1371/journal.pone.0229113 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0229113 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 32126111 es_ES
dc.identifier.pmcid PMC7053726 es_ES
dc.relation.pasarela S\407195 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Managing patient dose in computed tomography. (2000). Annals of the ICRP, 30(4), 7-7. doi:10.1016/s0146-6453(01)00049-5 es_ES
dc.description.references Chillarón, M., Vidal, V., Segrelles, D., Blanquer, I., & Verdú, G. (2017). Combining Grid Computing and Docker Containers for the Study and Parametrization of CT Image Reconstruction Methods. Procedia Computer Science, 108, 1195-1204. doi:10.1016/j.procs.2017.05.065 es_ES
dc.description.references Flores, L., Vidal, V., & Verdú, G. (2015). Iterative Reconstruction from Few-view Projections. Procedia Computer Science, 51, 703-712. doi:10.1016/j.procs.2015.05.188 es_ES
dc.description.references Flores, L. A., Vidal, V., Mayo, P., Rodenas, F., & Verdú, G. (2014). Parallel CT image reconstruction based on GPUs. Radiation Physics and Chemistry, 95, 247-250. doi:10.1016/j.radphyschem.2013.03.011 es_ES
dc.description.references Parcero, E., Flores, L., Sánchez, M. G., Vidal, V., & Verdú, G. (2017). Impact of view reduction in CT on radiation dose for patients. Radiation Physics and Chemistry, 137, 173-175. doi:10.1016/j.radphyschem.2016.01.038 es_ES
dc.description.references I. Kumar, H. Bhadauria, J. Virmani, and J. Rawat, “Reduction of speckle noise from medical images using principal component analysis image fusion,” in Industrial and Information Systems, 2014 9th International Conference on. IEEE, 2014, pp. 1–6. es_ES
dc.description.references Barrett, J. F., & Keat, N. (2004). Artifacts in CT: Recognition and Avoidance. RadioGraphics, 24(6), 1679-1691. doi:10.1148/rg.246045065 es_ES
dc.description.references Chillarón, M., Vidal, V., Verdú, G., & Arnal, J. (2018). CT Medical Imaging Reconstruction Using Direct Algebraic Methods with Few Projections. Computational Science – ICCS 2018, 334-346. doi:10.1007/978-3-319-93701-4_25 es_ES
dc.description.references Joseph, P. M. (1982). An Improved Algorithm for Reprojecting Rays through Pixel Images. IEEE Transactions on Medical Imaging, 1(3), 192-196. doi:10.1109/tmi.1982.4307572 es_ES
dc.description.references F. P. Group. FORBILD head phantom. [Online]. Available: http://www.imp.uni-erlangen.de/forbild/english/results/index.htm. es_ES
dc.description.references Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43-71. doi:10.1145/355984.355989 es_ES
dc.description.references Yu, H., & Wang, G. (2010). A soft-threshold filtering approach for reconstruction from a limited number of projections. Physics in Medicine and Biology, 55(13), 3905-3916. doi:10.1088/0031-9155/55/13/022 es_ES
dc.description.references Beck, A., & Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1), 183-202. doi:10.1137/080716542 es_ES
dc.description.references C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Sixth International Conference on Computer Vision. IEEE, 1998, pp. 839–846. es_ES
dc.description.references A. Hore and D. Ziou, “Image Quality Metrics: PSNR vs. SSIM,” in 2010 20th International Conference on Pattern Recognition. IEEE, aug 2010, pp. 2366–2369. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem