- -

Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method

Mostrar el registro completo del ítem

Chillarón-Pérez, M.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2020). Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method. PLoS ONE. 15(3):1-14. https://doi.org/10.1371/journal.pone.0229113

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167841

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method
Autor: CHILLARÓN-PÉREZ, MÓNICA Vidal-Gimeno, Vicente-Emilio Verdú Martín, Gumersindo Jesús
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] In CT (computerized tomography) imaging reconstruction, the acquired sinograms are usually noisy, so artifacts will appear on the resulting images. Thus, it is necessary to find the adequate filters to combine with ...[+]
Palabras clave: CT , Algorithm
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0229113
Editorial:
Public Library of Science
Versión del editor: https://doi.org/10.1371/journal.pone.0229113
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F075/
Agradecimientos:
This research has been supported by "Universitat Politecnica de Valencia", "Generalitat Valenciana" under PROMETEO/2018/035 as well as ACIF/2017/075 predoctoral grant co-financed by FEDER and FSE funds, and "Spanish Ministry ...[+]
Tipo: Artículo

References

Managing patient dose in computed tomography. (2000). Annals of the ICRP, 30(4), 7-7. doi:10.1016/s0146-6453(01)00049-5

Chillarón, M., Vidal, V., Segrelles, D., Blanquer, I., & Verdú, G. (2017). Combining Grid Computing and Docker Containers for the Study and Parametrization of CT Image Reconstruction Methods. Procedia Computer Science, 108, 1195-1204. doi:10.1016/j.procs.2017.05.065

Flores, L., Vidal, V., & Verdú, G. (2015). Iterative Reconstruction from Few-view Projections. Procedia Computer Science, 51, 703-712. doi:10.1016/j.procs.2015.05.188 [+]
Managing patient dose in computed tomography. (2000). Annals of the ICRP, 30(4), 7-7. doi:10.1016/s0146-6453(01)00049-5

Chillarón, M., Vidal, V., Segrelles, D., Blanquer, I., & Verdú, G. (2017). Combining Grid Computing and Docker Containers for the Study and Parametrization of CT Image Reconstruction Methods. Procedia Computer Science, 108, 1195-1204. doi:10.1016/j.procs.2017.05.065

Flores, L., Vidal, V., & Verdú, G. (2015). Iterative Reconstruction from Few-view Projections. Procedia Computer Science, 51, 703-712. doi:10.1016/j.procs.2015.05.188

Flores, L. A., Vidal, V., Mayo, P., Rodenas, F., & Verdú, G. (2014). Parallel CT image reconstruction based on GPUs. Radiation Physics and Chemistry, 95, 247-250. doi:10.1016/j.radphyschem.2013.03.011

Parcero, E., Flores, L., Sánchez, M. G., Vidal, V., & Verdú, G. (2017). Impact of view reduction in CT on radiation dose for patients. Radiation Physics and Chemistry, 137, 173-175. doi:10.1016/j.radphyschem.2016.01.038

I. Kumar, H. Bhadauria, J. Virmani, and J. Rawat, “Reduction of speckle noise from medical images using principal component analysis image fusion,” in Industrial and Information Systems, 2014 9th International Conference on. IEEE, 2014, pp. 1–6.

Barrett, J. F., & Keat, N. (2004). Artifacts in CT: Recognition and Avoidance. RadioGraphics, 24(6), 1679-1691. doi:10.1148/rg.246045065

Chillarón, M., Vidal, V., Verdú, G., & Arnal, J. (2018). CT Medical Imaging Reconstruction Using Direct Algebraic Methods with Few Projections. Computational Science – ICCS 2018, 334-346. doi:10.1007/978-3-319-93701-4_25

Joseph, P. M. (1982). An Improved Algorithm for Reprojecting Rays through Pixel Images. IEEE Transactions on Medical Imaging, 1(3), 192-196. doi:10.1109/tmi.1982.4307572

F. P. Group. FORBILD head phantom. [Online]. Available: http://www.imp.uni-erlangen.de/forbild/english/results/index.htm.

Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43-71. doi:10.1145/355984.355989

Yu, H., & Wang, G. (2010). A soft-threshold filtering approach for reconstruction from a limited number of projections. Physics in Medicine and Biology, 55(13), 3905-3916. doi:10.1088/0031-9155/55/13/022

Beck, A., & Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1), 183-202. doi:10.1137/080716542

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Sixth International Conference on Computer Vision. IEEE, 1998, pp. 839–846.

A. Hore and D. Ziou, “Image Quality Metrics: PSNR vs. SSIM,” in 2010 20th International Conference on Pattern Recognition. IEEE, aug 2010, pp. 2366–2369.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem