- -

Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem

Mostrar el registro completo del ítem

Zapata, R.; Oliver Villanueva, JV.; Lemus Zúñiga, LG.; Luzuriaga, JE.; Mateo Pla, MÁ.; Urchueguía Schölzel, JF. (2020). Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem. Plant Signaling and Behaviour (Online). 15(10):1-9. https://doi.org/10.1080/15592324.2020.1795580

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167849

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem
Autor: Zapata, Rodolfo Oliver Villanueva, José Vicente Lemus Zúñiga, Lenin Guillermo Luzuriaga, Jorge E. Mateo Pla, Miguel Ángel Urchueguía Schölzel, Javier Fermín
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària
Fecha difusión:
Resumen:
[EN] Electric potential differences in living plants are explained by theories based on sap flow. In order to acquire more advanced knowledge about the spatial distribution of these electric potential measures in trees, ...[+]
Palabras clave: Natural electric signs , Plant electrical potential , Natural electrical power , Mediterranean pines , Tree age influence , Electrode placement influence , Adaptive forest management
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Plant Signaling and Behaviour (Online). (eissn: 1559-2324 )
DOI: 10.1080/15592324.2020.1795580
Editorial:
Landes Bioscience
Versión del editor: https://doi.org/10.1080/15592324.2020.1795580
Código del Proyecto:
info:eu-repo/grantAgreement/EC/Interreg Sudoe/SOE3%2FP4%2FE0954/EU/Gestión del riesgo de emisiones de gases de efecto invernadero en incendios forestales (REMAS)/
Descripción: This is an Accepted Manuscript of an article published by Taylor & Francis in Plant Signaling and Behaviour on 2020, available online: http://www.tandfonline.com/10.1080/15592324.2020.1795580
Tipo: Artículo

References

I. Further experiments on the more important physiological changes induced in the human economy by change of climate. (1873). Proceedings of the Royal Society of London, 21(139-147), 1-10. doi:10.1098/rspl.1872.0002

Darwin, C. (1875). Insectivorous plants /. doi:10.5962/bhl.title.99933

Bose, J. C. (1926). The nervous mechanism of plants /. doi:10.5962/bhl.title.139322 [+]
I. Further experiments on the more important physiological changes induced in the human economy by change of climate. (1873). Proceedings of the Royal Society of London, 21(139-147), 1-10. doi:10.1098/rspl.1872.0002

Darwin, C. (1875). Insectivorous plants /. doi:10.5962/bhl.title.99933

Bose, J. C. (1926). The nervous mechanism of plants /. doi:10.5962/bhl.title.139322

Pickard, B. G. (1973). Action potentials in higher plants. The Botanical Review, 39(2), 172-201. doi:10.1007/bf02859299

Oyarce, P., & Gurovich, L. (2010). Electrical signals in avocado trees. Plant Signaling & Behavior, 5(1), 34-41. doi:10.4161/psb.5.1.10157

Gurovich, L. A., & Hermosilla, P. (2009). Electric signalling in fruit trees in response to water applications and light–darkness conditions. Journal of Plant Physiology, 166(3), 290-300. doi:10.1016/j.jplph.2008.06.004

Rhodes, J., Thain, J., & Wildon, D. (1996). The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta, 200(1). doi:10.1007/bf00196648

Volkov, A. G., Adesina, T., & Jovanov, E. (2007). Closing of Venus Flytrap by Electrical Stimulation of Motor Cells. Plant Signaling & Behavior, 2(3), 139-145. doi:10.4161/psb.2.3.4217

Pyatygin, S. S., Opritov, V. A., & Vodeneev, V. A. (2008). Signaling role of action potential in higher plants. Russian Journal of Plant Physiology, 55(2), 285-291. doi:10.1134/s1021443708020179

Brenner, E. D., Stahlberg, R., Mancuso, S., Vivanco, J., Baluška, F., & Van Volkenburgh, E. (2006). Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science, 11(8), 413-419. doi:10.1016/j.tplants.2006.06.009

Zimmermann, M. R., Maischak, H., Mithöfer, A., Boland, W., & Felle, H. H. (2009). System Potentials, a Novel Electrical Long-Distance Apoplastic Signal in Plants, Induced by Wounding. Plant Physiology, 149(3), 1593-1600. doi:10.1104/pp.108.133884

Schaller, A., & Oecking, C. (1999). Modulation of Plasma Membrane H + -ATPase Activity Differentially Activates Wound and Pathogen Defense Responses in Tomato Plants. The Plant Cell, 11(2), 263. doi:10.2307/3870855

FROMM, J., & LAUTNER, S. (2006). Electrical signals and their physiological significance in plants. Plant, Cell & Environment, 30(3), 249-257. doi:10.1111/j.1365-3040.2006.01614.x

Gelli, A., Higgins, V. J., & Blumwald, E. (1997). Activation of Plant Plasma Membrane Ca2+-Permeable Channels by Race-Specific Fungal Elicitors. Plant Physiology, 113(1), 269-279. doi:10.1104/pp.113.1.269

Stankovic, B., Zawadzki, T., & Davies, E. (1997). Characterization of the Variation Potential in Sunflower. Plant Physiology, 115(3), 1083-1088. doi:10.1104/pp.115.3.1083

Mwesigwa, J., Collins, D. J., & Volkov, A. G. (2000). Electrochemical signaling in green plants: effects of 2,4-dinitrophenol on variation and action potentials in soybean. Bioelectrochemistry, 51(2), 201-205. doi:10.1016/s0302-4598(00)00075-1

Sukhova, E., Akinchits, E., & Sukhov, V. (2017). Mathematical Models of Electrical Activity in Plants. The Journal of Membrane Biology, 250(5), 407-423. doi:10.1007/s00232-017-9969-7

Love, C. J., Zhang, S., & Mershin, A. (2008). Source of Sustained Voltage Difference between the Xylem of a Potted Ficus benjamina Tree and Its Soil. PLoS ONE, 3(8), e2963. doi:10.1371/journal.pone.0002963

Gora, E. M., & Yanoviak, S. P. (2015). Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Canadian Journal of Forest Research, 45(3), 236-245. doi:10.1139/cjfr-2014-0380

Horwitz, W. (1939). The theory of electrokinetic phenomena. Journal of Chemical Education, 16(11), 519. doi:10.1021/ed016p519

Gibert, D., Le Mouël, J.-L., Lambs, L., Nicollin, F., & Perrier, F. (2006). Sap flow and daily electric potential variations in a tree trunk. Plant Science, 171(5), 572-584. doi:10.1016/j.plantsci.2006.06.012

Gil, P. M., Gurovich, L., & Schaffer, B. (2008). The electrical response of fruit trees to soil water availability and diurnal light-dark cycles. Plant Signaling & Behavior, 3(11), 1026-1029. doi:10.4161/psb.6786

Gil, P. M., Gurovich, L., Schaffer, B., García, N., & Iturriaga, R. (2009). Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia. Plant Signaling & Behavior, 4(2), 100-108. doi:10.4161/psb.4.2.7872

Ríos-Rojas, L., Morales-Moraga, D., Alcalde, J. A., & Gurovich, L. A. (2015). Use of plant woody species electrical potential for irrigation scheduling. Plant Signaling & Behavior, 10(2), e976487. doi:10.4161/15592324.2014.976487

Cardoso SS, Carrondo LB, Marques JM, Narciso PN, Rocha MJ, Rodrigues IN, Soares A. (2004). Monitorization of the electrical signal generated by a tree. February 2004 – 4th luso-spanish assembly on geodesy and geophysics.

Le Mouël, J.-L., Gibert, D., & Poirier, J.-P. (2010). On transient electric potential variations in a standing tree and atmospheric electricity. Comptes Rendus Geoscience, 342(2), 95-99. doi:10.1016/j.crte.2009.12.001

Koppan A (2004). Variations of the natural electric potential differences occurring on tree trunks and their relationship with the xylem sap flow. PhD Thesis. University of West Hungary. Sopron, Hungary.

Volkov, A. G., & Ranatunga, D. R. A. (2006). Plants as Environmental Biosensors. Plant Signaling & Behavior, 1(3), 105-115. doi:10.4161/psb.1.3.3000

AAVV. (2008). Distribution map of aleppo pine. EUFORGEN 2009,[Retrieved 2020 July 16]. www.euforgen.org

De Luis, M., Čufar, K., Di Filippo, A., Novak, K., Papadopoulos, A., Piovesan, G., … Smith, K. T. (2013). Plasticity in Dendroclimatic Response across the Distribution Range of Aleppo Pine (Pinus halepensis). PLoS ONE, 8(12), e83550. doi:10.1371/journal.pone.0083550

Fadi B, Semerci H, Vendramin GG. 2003. EUROFORGEN technical guidelines for genetic conservation and use for aleppo pine (Pinus halepensis) and brutia pine (Pinus brutia).  IPGRI, International plant genetic resources institute. Rome (Italy). p. 6. ISBN 92-9043-571-2.

Mauri A, Di Leo M, de Rigo D, Caudullo G. 2016. Pinus halepensis and Pinus brutia in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A, editors. European Atlas of Forest TreeSpecies. Publ. Off. EU, Luxembourg. p. e0166b8+.

Pausas, J. G., Ribeiro, E., & Vallejo, R. (2004). Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. Forest Ecology and Management, 203(1-3), 251-259. doi:10.1016/j.foreco.2004.07.061

Dorado Liñán, I., Gutiérrez, E., Heinrich, I., Andreu-Hayles, L., Muntán, E., Campelo, F., & Helle, G. (2011). Age effects and climate response in trees: a multi-proxy tree-ring test in old-growth life stages. European Journal of Forest Research, 131(4), 933-944. doi:10.1007/s10342-011-0566-5

Saket M, Altrell D, Vuorinen P, Dalsgaard S, Andersson,National forest inventory (field manual template) The Forest Resources Assessment (FRA), , http://www.fao.org/3/ae578e/AE578E06.htm.

FERNÁNDEZ PURATICH, H. W. (s. f.). VALORIZACIÓN INTEGRAL DE LA BIOMASA LEÑOSA AGROFORESTAL A LO LARGO DEL GRADIENTE ALTITUDINAL EN CONDICIONES MEDITERRÁNEAS. doi:10.4995/thesis/10251/19133

Hapla, F., Oliver-Villanueva, J. V., & González-Molina, J. M. (2000). Effect of silvicultural management on wood quality and timber utilisation of Cedrus atlantica in the European mediterranean area. Holz als Roh- und Werkstoff, 58(1-2), 1-8. doi:10.1007/s001070050377

Hapla, F., & Saborowski, J. (1987). Stichprobenplanung für holzanatomische Untersuchungen. Holz als Roh- und Werkstoff, 45(4), 141-144. doi:10.1007/bf02627564

Seeling U, Sachsse H (1991). Abnorme Kernbildung bei Rotbuche und ihr Einfluß auf holzbiologische und holztechnologische Kenngrößen [Abnormal heartwood formation in beech and its influence on the biological and technological features of the wood] (Doctoral dissertation, Doctoral thesis, 2nd).

Wobst J (1995). Auswirkungen von Standortwahl und Durchforstungsstrategie auf verwertungsrelvante Holzeigenschaften der Douglasie (Pseudotsuga menziesii (Mirb. (Franco)) (Doctoral dissertation). UNIVERSITY OF GÖTTINGEN.

Peters S (1996). Untersuchungen über die Holzeigenschaften der Stieleiche (Quercus robur L.) und ihre Beeinflussung durch die Bestandesdichte. Papierflieger, UNIVERSITY OF GÖTTINGEN.

Krcmar, P., Kuritka, I., Maslik, J., Urbanek, P., Bazant, P., Machovsky, M., … Merka, P. (2019). Fully Inkjet-Printed CuO Sensor on Flexible Polymer Substrate for Alcohol Vapours and Humidity Sensing at Room Temperature. Sensors, 19(14), 3068. doi:10.3390/s19143068

Wang, K., & Zhang, S. (2019). Extracellular electron transfer modes and rate-limiting steps in denitrifying biocathodes. Environmental Science and Pollution Research, 26(16), 16378-16387. doi:10.1007/s11356-019-05117-x

DIRECTIVE 1999/5/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 1999.

Prutchi, D., & Norris, M. (2004). Design and Development of Medical Electronic Instrumentation. doi:10.1002/0471681849

Woodward, S., & Pearce, R. B. (1988). The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens. Physiological and Molecular Plant Pathology, 33(1), 127-149. doi:10.1016/0885-5765(88)90049-5

Mullick, D. B. (1975). A new tissue essential to necrophylactic periderm formation in the bark of four conifers. Canadian Journal of Botany, 53(21), 2443-2457. doi:10.1139/b75-271

Abbott, D. T., & Crossley, D. A. (1982). Woody Litter Decomposition Following Clear-Cutting. Ecology, 63(1), 35-42. doi:10.2307/1937028

Fensom, D. S. (1963). THE BIOELECTRIC POTENTIALS OF PLANTS AND THEIR FUNCTIONAL SIGNIFICANCE: V. SOME DAILY AND SEASONAL CHANGES IN THE ELECTRICAL POTENTIAL AND RESISTANCE OF LIVING TREES. Canadian Journal of Botany, 41(6), 831-851. doi:10.1139/b63-068

Sellin, A. (1991). Variation in sapwood thickness of Picea abies in Estonia depending on the tree age. Scandinavian Journal of Forest Research, 6(1-4), 463-469. doi:10.1080/02827589109382683

Rosenvald, K., Ostonen, I., Uri, V., Varik, M., Tedersoo, L., & Lõhmus, K. (2012). Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence. European Journal of Forest Research, 132(2), 219-230. doi:10.1007/s10342-012-0669-7

Delgado, A. V., González-Caballero, F., Hunter, R. J., Koopal, L. K., & Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 309(2), 194-224. doi:10.1016/j.jcis.2006.12.075

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem