- -

Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zapata, Rodolfo es_ES
dc.contributor.author Oliver Villanueva, José Vicente es_ES
dc.contributor.author Lemus Zúñiga, Lenin Guillermo es_ES
dc.contributor.author Luzuriaga, Jorge E. es_ES
dc.contributor.author Mateo Pla, Miguel Ángel es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.date.accessioned 2021-06-12T03:33:13Z
dc.date.available 2021-06-12T03:33:13Z
dc.date.issued 2020-10-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167849
dc.description This is an Accepted Manuscript of an article published by Taylor & Francis in Plant Signaling and Behaviour on 2020, available online: http://www.tandfonline.com/10.1080/15592324.2020.1795580 es_ES
dc.description.abstract [EN] Electric potential differences in living plants are explained by theories based on sap flow. In order to acquire more advanced knowledge about the spatial distribution of these electric potential measures in trees, this research aims to analyze electrical signals in a population of Aleppo pines (Pinus halepensisMill.) in a representative Mediterranean forest ecosystem. The specific research objective is to assess some of the most significant factors that influence the distribution pattern of those electric signals: tree age, measurement type and electrode placement. The research has been conducted in representative forest stands, obtaining measurements of different representative trees. After a statistical evaluation of the obtained results, the main conclusions of our research are: A.Tree maturity influences directly on electric potential. B.Maximum electrical signals can be measured in young pines showing values of 0.6 V and 0.6 mu A for voltage and current, respectively. C.The distribution patterns of both voltage and short-circuit current depending on electrode placement are uniform. es_ES
dc.language Inglés es_ES
dc.publisher Landes Bioscience es_ES
dc.relation.ispartof Plant Signaling and Behaviour (Online) es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Natural electric signs es_ES
dc.subject Plant electrical potential es_ES
dc.subject Natural electrical power es_ES
dc.subject Mediterranean pines es_ES
dc.subject Tree age influence es_ES
dc.subject Electrode placement influence es_ES
dc.subject Adaptive forest management es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/15592324.2020.1795580 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/Interreg Sudoe/SOE3%2FP4%2FE0954/EU/Gestión del riesgo de emisiones de gases de efecto invernadero en incendios forestales (REMAS)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Zapata, R.; Oliver Villanueva, JV.; Lemus Zúñiga, LG.; Luzuriaga, JE.; Mateo Pla, MÁ.; Urchueguía Schölzel, JF. (2020). Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem. Plant Signaling and Behaviour (Online). 15(10):1-9. https://doi.org/10.1080/15592324.2020.1795580 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/15592324.2020.1795580 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 1559-2324 es_ES
dc.relation.pasarela S\416004 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Valenciana de Seguridad y Respuesta a las Emergencias es_ES
dc.description.references I. Further experiments on the more important physiological changes induced in the human economy by change of climate. (1873). Proceedings of the Royal Society of London, 21(139-147), 1-10. doi:10.1098/rspl.1872.0002 es_ES
dc.description.references Darwin, C. (1875). Insectivorous plants /. doi:10.5962/bhl.title.99933 es_ES
dc.description.references Bose, J. C. (1926). The nervous mechanism of plants /. doi:10.5962/bhl.title.139322 es_ES
dc.description.references Pickard, B. G. (1973). Action potentials in higher plants. The Botanical Review, 39(2), 172-201. doi:10.1007/bf02859299 es_ES
dc.description.references Oyarce, P., & Gurovich, L. (2010). Electrical signals in avocado trees. Plant Signaling & Behavior, 5(1), 34-41. doi:10.4161/psb.5.1.10157 es_ES
dc.description.references Gurovich, L. A., & Hermosilla, P. (2009). Electric signalling in fruit trees in response to water applications and light–darkness conditions. Journal of Plant Physiology, 166(3), 290-300. doi:10.1016/j.jplph.2008.06.004 es_ES
dc.description.references Rhodes, J., Thain, J., & Wildon, D. (1996). The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta, 200(1). doi:10.1007/bf00196648 es_ES
dc.description.references Volkov, A. G., Adesina, T., & Jovanov, E. (2007). Closing of Venus Flytrap by Electrical Stimulation of Motor Cells. Plant Signaling & Behavior, 2(3), 139-145. doi:10.4161/psb.2.3.4217 es_ES
dc.description.references Pyatygin, S. S., Opritov, V. A., & Vodeneev, V. A. (2008). Signaling role of action potential in higher plants. Russian Journal of Plant Physiology, 55(2), 285-291. doi:10.1134/s1021443708020179 es_ES
dc.description.references Brenner, E. D., Stahlberg, R., Mancuso, S., Vivanco, J., Baluška, F., & Van Volkenburgh, E. (2006). Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science, 11(8), 413-419. doi:10.1016/j.tplants.2006.06.009 es_ES
dc.description.references Zimmermann, M. R., Maischak, H., Mithöfer, A., Boland, W., & Felle, H. H. (2009). System Potentials, a Novel Electrical Long-Distance Apoplastic Signal in Plants, Induced by Wounding. Plant Physiology, 149(3), 1593-1600. doi:10.1104/pp.108.133884 es_ES
dc.description.references Schaller, A., & Oecking, C. (1999). Modulation of Plasma Membrane H + -ATPase Activity Differentially Activates Wound and Pathogen Defense Responses in Tomato Plants. The Plant Cell, 11(2), 263. doi:10.2307/3870855 es_ES
dc.description.references FROMM, J., & LAUTNER, S. (2006). Electrical signals and their physiological significance in plants. Plant, Cell & Environment, 30(3), 249-257. doi:10.1111/j.1365-3040.2006.01614.x es_ES
dc.description.references Gelli, A., Higgins, V. J., & Blumwald, E. (1997). Activation of Plant Plasma Membrane Ca2+-Permeable Channels by Race-Specific Fungal Elicitors. Plant Physiology, 113(1), 269-279. doi:10.1104/pp.113.1.269 es_ES
dc.description.references Stankovic, B., Zawadzki, T., & Davies, E. (1997). Characterization of the Variation Potential in Sunflower. Plant Physiology, 115(3), 1083-1088. doi:10.1104/pp.115.3.1083 es_ES
dc.description.references Mwesigwa, J., Collins, D. J., & Volkov, A. G. (2000). Electrochemical signaling in green plants: effects of 2,4-dinitrophenol on variation and action potentials in soybean. Bioelectrochemistry, 51(2), 201-205. doi:10.1016/s0302-4598(00)00075-1 es_ES
dc.description.references Sukhova, E., Akinchits, E., & Sukhov, V. (2017). Mathematical Models of Electrical Activity in Plants. The Journal of Membrane Biology, 250(5), 407-423. doi:10.1007/s00232-017-9969-7 es_ES
dc.description.references Love, C. J., Zhang, S., & Mershin, A. (2008). Source of Sustained Voltage Difference between the Xylem of a Potted Ficus benjamina Tree and Its Soil. PLoS ONE, 3(8), e2963. doi:10.1371/journal.pone.0002963 es_ES
dc.description.references Gora, E. M., & Yanoviak, S. P. (2015). Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Canadian Journal of Forest Research, 45(3), 236-245. doi:10.1139/cjfr-2014-0380 es_ES
dc.description.references Horwitz, W. (1939). The theory of electrokinetic phenomena. Journal of Chemical Education, 16(11), 519. doi:10.1021/ed016p519 es_ES
dc.description.references Gibert, D., Le Mouël, J.-L., Lambs, L., Nicollin, F., & Perrier, F. (2006). Sap flow and daily electric potential variations in a tree trunk. Plant Science, 171(5), 572-584. doi:10.1016/j.plantsci.2006.06.012 es_ES
dc.description.references Gil, P. M., Gurovich, L., & Schaffer, B. (2008). The electrical response of fruit trees to soil water availability and diurnal light-dark cycles. Plant Signaling & Behavior, 3(11), 1026-1029. doi:10.4161/psb.6786 es_ES
dc.description.references Gil, P. M., Gurovich, L., Schaffer, B., García, N., & Iturriaga, R. (2009). Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia. Plant Signaling & Behavior, 4(2), 100-108. doi:10.4161/psb.4.2.7872 es_ES
dc.description.references Ríos-Rojas, L., Morales-Moraga, D., Alcalde, J. A., & Gurovich, L. A. (2015). Use of plant woody species electrical potential for irrigation scheduling. Plant Signaling & Behavior, 10(2), e976487. doi:10.4161/15592324.2014.976487 es_ES
dc.description.references Cardoso SS, Carrondo LB, Marques JM, Narciso PN, Rocha MJ, Rodrigues IN, Soares A. (2004). Monitorization of the electrical signal generated by a tree. February 2004 – 4th luso-spanish assembly on geodesy and geophysics. es_ES
dc.description.references Le Mouël, J.-L., Gibert, D., & Poirier, J.-P. (2010). On transient electric potential variations in a standing tree and atmospheric electricity. Comptes Rendus Geoscience, 342(2), 95-99. doi:10.1016/j.crte.2009.12.001 es_ES
dc.description.references Koppan A (2004). Variations of the natural electric potential differences occurring on tree trunks and their relationship with the xylem sap flow. PhD Thesis. University of West Hungary. Sopron, Hungary. es_ES
dc.description.references Volkov, A. G., & Ranatunga, D. R. A. (2006). Plants as Environmental Biosensors. Plant Signaling & Behavior, 1(3), 105-115. doi:10.4161/psb.1.3.3000 es_ES
dc.description.references AAVV. (2008). Distribution map of aleppo pine. EUFORGEN 2009,[Retrieved 2020 July 16]. www.euforgen.org es_ES
dc.description.references De Luis, M., Čufar, K., Di Filippo, A., Novak, K., Papadopoulos, A., Piovesan, G., … Smith, K. T. (2013). Plasticity in Dendroclimatic Response across the Distribution Range of Aleppo Pine (Pinus halepensis). PLoS ONE, 8(12), e83550. doi:10.1371/journal.pone.0083550 es_ES
dc.description.references Fadi B, Semerci H, Vendramin GG. 2003. EUROFORGEN technical guidelines for genetic conservation and use for aleppo pine (Pinus halepensis) and brutia pine (Pinus brutia).  IPGRI, International plant genetic resources institute. Rome (Italy). p. 6. ISBN 92-9043-571-2. es_ES
dc.description.references Mauri A, Di Leo M, de Rigo D, Caudullo G. 2016. Pinus halepensis and Pinus brutia in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A, editors. European Atlas of Forest TreeSpecies. Publ. Off. EU, Luxembourg. p. e0166b8+. es_ES
dc.description.references Pausas, J. G., Ribeiro, E., & Vallejo, R. (2004). Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. Forest Ecology and Management, 203(1-3), 251-259. doi:10.1016/j.foreco.2004.07.061 es_ES
dc.description.references Dorado Liñán, I., Gutiérrez, E., Heinrich, I., Andreu-Hayles, L., Muntán, E., Campelo, F., & Helle, G. (2011). Age effects and climate response in trees: a multi-proxy tree-ring test in old-growth life stages. European Journal of Forest Research, 131(4), 933-944. doi:10.1007/s10342-011-0566-5 es_ES
dc.description.references Saket M, Altrell D, Vuorinen P, Dalsgaard S, Andersson,National forest inventory (field manual template) The Forest Resources Assessment (FRA), , http://www.fao.org/3/ae578e/AE578E06.htm. es_ES
dc.description.references FERNÁNDEZ PURATICH, H. W. (s. f.). VALORIZACIÓN INTEGRAL DE LA BIOMASA LEÑOSA AGROFORESTAL A LO LARGO DEL GRADIENTE ALTITUDINAL EN CONDICIONES MEDITERRÁNEAS. doi:10.4995/thesis/10251/19133 es_ES
dc.description.references Hapla, F., Oliver-Villanueva, J. V., & González-Molina, J. M. (2000). Effect of silvicultural management on wood quality and timber utilisation of Cedrus atlantica in the European mediterranean area. Holz als Roh- und Werkstoff, 58(1-2), 1-8. doi:10.1007/s001070050377 es_ES
dc.description.references Hapla, F., & Saborowski, J. (1987). Stichprobenplanung für holzanatomische Untersuchungen. Holz als Roh- und Werkstoff, 45(4), 141-144. doi:10.1007/bf02627564 es_ES
dc.description.references Seeling U, Sachsse H (1991). Abnorme Kernbildung bei Rotbuche und ihr Einfluß auf holzbiologische und holztechnologische Kenngrößen [Abnormal heartwood formation in beech and its influence on the biological and technological features of the wood] (Doctoral dissertation, Doctoral thesis, 2nd). es_ES
dc.description.references Wobst J (1995). Auswirkungen von Standortwahl und Durchforstungsstrategie auf verwertungsrelvante Holzeigenschaften der Douglasie (Pseudotsuga menziesii (Mirb. (Franco)) (Doctoral dissertation). UNIVERSITY OF GÖTTINGEN. es_ES
dc.description.references Peters S (1996). Untersuchungen über die Holzeigenschaften der Stieleiche (Quercus robur L.) und ihre Beeinflussung durch die Bestandesdichte. Papierflieger, UNIVERSITY OF GÖTTINGEN. es_ES
dc.description.references Krcmar, P., Kuritka, I., Maslik, J., Urbanek, P., Bazant, P., Machovsky, M., … Merka, P. (2019). Fully Inkjet-Printed CuO Sensor on Flexible Polymer Substrate for Alcohol Vapours and Humidity Sensing at Room Temperature. Sensors, 19(14), 3068. doi:10.3390/s19143068 es_ES
dc.description.references Wang, K., & Zhang, S. (2019). Extracellular electron transfer modes and rate-limiting steps in denitrifying biocathodes. Environmental Science and Pollution Research, 26(16), 16378-16387. doi:10.1007/s11356-019-05117-x es_ES
dc.description.references DIRECTIVE 1999/5/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 1999. es_ES
dc.description.references Prutchi, D., & Norris, M. (2004). Design and Development of Medical Electronic Instrumentation. doi:10.1002/0471681849 es_ES
dc.description.references Woodward, S., & Pearce, R. B. (1988). The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens. Physiological and Molecular Plant Pathology, 33(1), 127-149. doi:10.1016/0885-5765(88)90049-5 es_ES
dc.description.references Mullick, D. B. (1975). A new tissue essential to necrophylactic periderm formation in the bark of four conifers. Canadian Journal of Botany, 53(21), 2443-2457. doi:10.1139/b75-271 es_ES
dc.description.references Abbott, D. T., & Crossley, D. A. (1982). Woody Litter Decomposition Following Clear-Cutting. Ecology, 63(1), 35-42. doi:10.2307/1937028 es_ES
dc.description.references Fensom, D. S. (1963). THE BIOELECTRIC POTENTIALS OF PLANTS AND THEIR FUNCTIONAL SIGNIFICANCE: V. SOME DAILY AND SEASONAL CHANGES IN THE ELECTRICAL POTENTIAL AND RESISTANCE OF LIVING TREES. Canadian Journal of Botany, 41(6), 831-851. doi:10.1139/b63-068 es_ES
dc.description.references Sellin, A. (1991). Variation in sapwood thickness of Picea abies in Estonia depending on the tree age. Scandinavian Journal of Forest Research, 6(1-4), 463-469. doi:10.1080/02827589109382683 es_ES
dc.description.references Rosenvald, K., Ostonen, I., Uri, V., Varik, M., Tedersoo, L., & Lõhmus, K. (2012). Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence. European Journal of Forest Research, 132(2), 219-230. doi:10.1007/s10342-012-0669-7 es_ES
dc.description.references Delgado, A. V., González-Caballero, F., Hunter, R. J., Koopal, L. K., & Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 309(2), 194-224. doi:10.1016/j.jcis.2006.12.075 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem