Mostrar el registro sencillo del ítem
dc.contributor.author | Samaniego, Franklin | es_ES |
dc.contributor.author | Sanchís Saez, Javier | es_ES |
dc.contributor.author | Garcia-Nieto, Sergio | es_ES |
dc.contributor.author | Simarro Fernández, Raúl | es_ES |
dc.date.accessioned | 2021-06-12T03:33:27Z | |
dc.date.available | 2021-06-12T03:33:27Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167856 | |
dc.description.abstract | [EN] Demand for 3D planning and guidance algorithms is increasing due, in part, to the increase in unmanned vehicle-based applications. Traditionally, two-dimensional (2D) trajectory planning algorithms address the problem by using the approach of maintaining a constant altitude. Addressing the problem of path planning in a three-dimensional (3D) space implies more complex scenarios where maintaining altitude is not a valid approach. The work presented here implements an architecture for the generation of 3D flight paths for fixed-wing unmanned aerial vehicles (UAVs). The aim is to determine the feasible flight path by minimizing the turning effort, starting from a set of control points in 3D space, including the initial and final point. The trajectory generated takes into account the rotation and elevation constraints of the UAV. From the defined control points and the movement constraints of the UAV, a path is generated that combines the union of the control points by means of a set of rectilinear segments and spherical curves. However, this design methodology means that the problem does not have a single solution; in other words, there are infinite solutions for the generation of the final path. For this reason, a multiobjective optimization problem (MOP) is proposed with the aim of independently maximizing each of the turning radii of the path. Finally, to produce a complete results visualization of the MOP and the final 3D trajectory, the architecture was implemented in a simulation with Matlab/Simulink/flightGear. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the Spanish Ministerio de Ciencia, Innovacion y Universidades for providing funding through the project RTI2018-096904-B-I00 and the local administration Generalitat Valenciana through projects GV/2017/029 and AICO/2019/055. Franklin Samaniego thanks IFTH (Instituto de Fomento al Talento Humano) Ecuador (2015-AR2Q9209), for its sponsorship of this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Electronics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | UAV | es_ES |
dc.subject | Path planning | es_ES |
dc.subject | Smooth path planning | es_ES |
dc.subject | Multiobjective optimization | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/electronics9010051 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IFTH//AR2Q9209/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096904-B-I00/ES/HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F055/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2017%2F029/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Samaniego, F.; Sanchís Saez, J.; Garcia-Nieto, S.; Simarro Fernández, R. (2020). Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs. Electronics. 9(1):1-23. https://doi.org/10.3390/electronics9010051 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/electronics9010051 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2079-9292 | es_ES |
dc.relation.pasarela | S\403799 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Instituto de Fomento al Talento Humano, Ecuador | es_ES |
dc.description.references | Kyriakidis, M., Happee, R., & de Winter, J. C. F. (2015). Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 32, 127-140. doi:10.1016/j.trf.2015.04.014 | es_ES |
dc.description.references | Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300-308. doi:10.1016/j.jenvp.2006.08.001 | es_ES |
dc.description.references | Morales, Y., Kallakuri, N., Shinozawa, K., Miyashita, T., & Hagita, N. (2013). Human-comfortable navigation for an autonomous robotic wheelchair. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2013.6696743 | es_ES |
dc.description.references | Krotkov, E., & Hebert, M. (s. f.). Mapping and positioning for a prototype lunar rover. Proceedings of 1995 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1995.525697 | es_ES |
dc.description.references | Rodriguez-Seda, E. J. (2014). Decentralized trajectory tracking with collision avoidance control for teams of unmanned vehicles with constant speed. 2014 American Control Conference. doi:10.1109/acc.2014.6859184 | es_ES |
dc.description.references | Xiaoping Ren, & Zixing Cai. (2010). Kinematics model of unmanned driving vehicle. 2010 8th World Congress on Intelligent Control and Automation. doi:10.1109/wcica.2010.5554512 | es_ES |
dc.description.references | Jun, J.-Y., Saut, J.-P., & Benamar, F. (2016). Pose estimation-based path planning for a tracked mobile robot traversing uneven terrains. Robotics and Autonomous Systems, 75, 325-339. doi:10.1016/j.robot.2015.09.014 | es_ES |
dc.description.references | Li, Y., Ding, L., & Liu, G. (2016). Attitude-based dynamic and kinematic models for wheels of mobile robot on deformable slope. Robotics and Autonomous Systems, 75, 161-175. doi:10.1016/j.robot.2015.10.006 | es_ES |
dc.description.references | Mekonnen, G., Kumar, S., & Pathak, P. M. (2016). Wireless hybrid visual servoing of omnidirectional wheeled mobile robots. Robotics and Autonomous Systems, 75, 450-462. doi:10.1016/j.robot.2015.08.008 | es_ES |
dc.description.references | Xu, J., Wang, M., & Qiao, L. (2015). Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Engineering, 105, 54-63. doi:10.1016/j.oceaneng.2015.06.022 | es_ES |
dc.description.references | Gafurov, S. A., & Klochkov, E. V. (2015). Autonomous Unmanned Underwater Vehicles Development Tendencies. Procedia Engineering, 106, 141-148. doi:10.1016/j.proeng.2015.06.017 | es_ES |
dc.description.references | Qi, X., & Cai, Z. (2018). Three-dimensional formation control based on nonlinear small gain method for multiple underactuated underwater vehicles. Ocean Engineering, 151, 105-114. doi:10.1016/j.oceaneng.2018.01.032 | es_ES |
dc.description.references | Ramasamy, S., Sabatini, R., Gardi, A., & Liu, J. (2016). LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense-and-avoid. Aerospace Science and Technology, 55, 344-358. doi:10.1016/j.ast.2016.05.020 | es_ES |
dc.description.references | Zhu, L., Cheng, X., & Yuan, F.-G. (2016). A 3D collision avoidance strategy for UAV with physical constraints. Measurement, 77, 40-49. doi:10.1016/j.measurement.2015.09.006 | es_ES |
dc.description.references | Chee, K. Y., & Zhong, Z. W. (2013). Control, navigation and collision avoidance for an unmanned aerial vehicle. Sensors and Actuators A: Physical, 190, 66-76. doi:10.1016/j.sna.2012.11.017 | es_ES |
dc.description.references | Courbon, J., Mezouar, Y., Guénard, N., & Martinet, P. (2010). Vision-based navigation of unmanned aerial vehicles. Control Engineering Practice, 18(7), 789-799. doi:10.1016/j.conengprac.2010.03.004 | es_ES |
dc.description.references | Aguilar, W., & Morales, S. (2016). 3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms. Electronics, 5(4), 70. doi:10.3390/electronics5040070 | es_ES |
dc.description.references | Yan, F., Liu, Y.-S., & Xiao, J.-Z. (2013). Path Planning in Complex 3D Environments Using a Probabilistic Roadmap Method. International Journal of Automation and Computing, 10(6), 525-533. doi:10.1007/s11633-013-0750-9 | es_ES |
dc.description.references | Yeh, H.-Y., Thomas, S., Eppstein, D., & Amato, N. M. (2012). UOBPRM: A uniformly distributed obstacle-based PRM. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2012.6385875 | es_ES |
dc.description.references | Liang, Y., & Xu, L. (2009). Global path planning for mobile robot based genetic algorithm and modified simulated annealing algorithm. Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation - GEC ’09. doi:10.1145/1543834.1543875 | es_ES |
dc.description.references | Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2016). An improved ant colony algorithm for robot path planning. Soft Computing, 21(19), 5829-5839. doi:10.1007/s00500-016-2161-7 | es_ES |
dc.description.references | Cao, H., Sun, S., Zhang, K., & Tang, Z. (2016). Visualized trajectory planning of flexible redundant robotic arm using a novel hybrid algorithm. Optik, 127(20), 9974-9983. doi:10.1016/j.ijleo.2016.07.078 | es_ES |
dc.description.references | Duan, H., & Qiao, P. (2014). Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing and Cybernetics, 7(1), 24-37. doi:10.1108/ijicc-02-2014-0005 | es_ES |
dc.description.references | Pandey, A., & Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. Defence Technology, 13(1), 47-58. doi:10.1016/j.dt.2017.01.001 | es_ES |
dc.description.references | Samaniego, F., Sanchis, J., García-Nieto, S., & Simarro, R. (2019). Recursive Rewarding Modified Adaptive Cell Decomposition (RR-MACD): A Dynamic Path Planning Algorithm for UAVs. Electronics, 8(3), 306. doi:10.3390/electronics8030306 | es_ES |
dc.description.references | Dubins, L. E. (1957). On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents. American Journal of Mathematics, 79(3), 497. doi:10.2307/2372560 | es_ES |
dc.description.references | Fleury, S., Soueres, P., Laumond, J.-P., & Chatila, R. (1995). Primitives for smoothing mobile robot trajectories. IEEE Transactions on Robotics and Automation, 11(3), 441-448. doi:10.1109/70.388788 | es_ES |
dc.description.references | Vanegas, G., Samaniego, F., Girbes, V., Armesto, L., & Garcia-Nieto, S. (2018). Smooth 3D path planning for non-holonomic UAVs. 2018 7th International Conference on Systems and Control (ICSC). doi:10.1109/icosc.2018.8587835 | es_ES |
dc.description.references | Brezak, M., & Petrovic, I. (2014). Real-time Approximation of Clothoids With Bounded Error for Path Planning Applications. IEEE Transactions on Robotics, 30(2), 507-515. doi:10.1109/tro.2013.2283928 | es_ES |
dc.description.references | Barsky, B. A., & DeRose, T. D. (1989). Geometric continuity of parametric curves: three equivalent characterizations. IEEE Computer Graphics and Applications, 9(6), 60-69. doi:10.1109/38.41470 | es_ES |
dc.description.references | Kim, H., Kim, D., Shin, J.-U., Kim, H., & Myung, H. (2014). Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Engineering, 84, 37-44. doi:10.1016/j.oceaneng.2014.03.034 | es_ES |
dc.description.references | Isaacs, J., & Hespanha, J. (2013). Dubins Traveling Salesman Problem with Neighborhoods: A Graph-Based Approach. Algorithms, 6(1), 84-99. doi:10.3390/a6010084 | es_ES |
dc.description.references | Masehian, E., & Kakahaji, H. (2014). NRR: a nonholonomic random replanner for navigation of car-like robots in unknown environments. Robotica, 32(7), 1101-1123. doi:10.1017/s0263574713001276 | es_ES |
dc.description.references | Fraichard, T., & Scheuer, A. (2004). From Reeds and Shepp’s to Continuous-Curvature Paths. IEEE Transactions on Robotics, 20(6), 1025-1035. doi:10.1109/tro.2004.833789 | es_ES |
dc.description.references | Pepy, R., Lambert, A., & Mounier, H. (s. f.). Path Planning using a Dynamic Vehicle Model. 2006 2nd International Conference on Information & Communication Technologies. doi:10.1109/ictta.2006.1684472 | es_ES |
dc.description.references | Girbés, V., Vanegas, G., & Armesto, L. (2019). Clothoid-Based Three-Dimensional Curve for Attitude Planning. Journal of Guidance, Control, and Dynamics, 42(8), 1886-1898. doi:10.2514/1.g003551 | es_ES |
dc.description.references | De Lorenzis, L., Wriggers, P., & Hughes, T. J. R. (2014). Isogeometric contact: a review. GAMM-Mitteilungen, 37(1), 85-123. doi:10.1002/gamm.201410005 | es_ES |
dc.description.references | Pigounakis, K. G., Sapidis, N. S., & Kaklis, P. D. (1996). Fairing Spatial B-Spline Curves. Journal of Ship Research, 40(04), 351-367. doi:10.5957/jsr.1996.40.4.351 | es_ES |
dc.description.references | Pérez, L. H., Aguilar, M. C. M., Sánchez, N. M., & Montesinos, A. F. (2018). Path Planning Based on Parametric Curves. Advanced Path Planning for Mobile Entities. doi:10.5772/intechopen.72574 | es_ES |
dc.description.references | Huh, U.-Y., & Chang, S.-R. (2014). A G2 Continuous Path-smoothing Algorithm Using Modified Quadratic Polynomial Interpolation. International Journal of Advanced Robotic Systems, 11(2), 25. doi:10.5772/57340 | es_ES |
dc.description.references | Chang, S.-R., & Huh, U.-Y. (2014). A Collision-Free G2 Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation. International Journal of Advanced Robotic Systems, 11(12), 194. doi:10.5772/59463 | es_ES |
dc.description.references | Yaochu Jin, & Sendhoff, B. (2008). Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(3), 397-415. doi:10.1109/tsmcc.2008.919172 | es_ES |
dc.description.references | Velasco-Carrau, J., García-Nieto, S., Salcedo, J. V., & Bishop, R. H. (2016). Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control, and Dynamics, 39(2), 372-389. doi:10.2514/1.g001294 | es_ES |
dc.description.references | Honig, E., Schucking, E. L., & Vishveshwara, C. V. (1974). Motion of charged particles in homogeneous electromagnetic fields. Journal of Mathematical Physics, 15(6), 774-781. doi:10.1063/1.1666728 | es_ES |
dc.description.references | Iyer, B. R., & Vishveshwara, C. V. (1988). The Frenet-Serret formalism and black holes in higher dimensions. Classical and Quantum Gravity, 5(7), 961-970. doi:10.1088/0264-9381/5/7/005 | es_ES |
dc.description.references | Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108 | es_ES |
dc.description.references | Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010 | es_ES |