- -

Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs

Mostrar el registro completo del ítem

Samaniego, F.; Sanchís Saez, J.; Garcia-Nieto, S.; Simarro Fernández, R. (2020). Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs. Electronics. 9(1):1-23. https://doi.org/10.3390/electronics9010051

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167856

Ficheros en el ítem

Metadatos del ítem

Título: Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs
Autor: Samaniego, Franklin Sanchís Saez, Javier Garcia-Nieto, Sergio Simarro Fernández, Raúl
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Demand for 3D planning and guidance algorithms is increasing due, in part, to the increase in unmanned vehicle-based applications. Traditionally, two-dimensional (2D) trajectory planning algorithms address the problem ...[+]
Palabras clave: UAV , Path planning , Smooth path planning , Multiobjective optimization
Derechos de uso: Reconocimiento (by)
Fuente:
Electronics. (eissn: 2079-9292 )
DOI: 10.3390/electronics9010051
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/electronics9010051
Código del Proyecto:
info:eu-repo/grantAgreement/IFTH//AR2Q9209/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096904-B-I00/ES/HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F055/
info:eu-repo/grantAgreement/GVA//GV%2F2017%2F029/
Agradecimientos:
The authors would like to acknowledge the Spanish Ministerio de Ciencia, Innovacion y Universidades for providing funding through the project RTI2018-096904-B-I00 and the local administration Generalitat Valenciana through ...[+]
Tipo: Artículo

References

Kyriakidis, M., Happee, R., & de Winter, J. C. F. (2015). Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 32, 127-140. doi:10.1016/j.trf.2015.04.014

Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300-308. doi:10.1016/j.jenvp.2006.08.001

Morales, Y., Kallakuri, N., Shinozawa, K., Miyashita, T., & Hagita, N. (2013). Human-comfortable navigation for an autonomous robotic wheelchair. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2013.6696743 [+]
Kyriakidis, M., Happee, R., & de Winter, J. C. F. (2015). Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 32, 127-140. doi:10.1016/j.trf.2015.04.014

Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300-308. doi:10.1016/j.jenvp.2006.08.001

Morales, Y., Kallakuri, N., Shinozawa, K., Miyashita, T., & Hagita, N. (2013). Human-comfortable navigation for an autonomous robotic wheelchair. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2013.6696743

Krotkov, E., & Hebert, M. (s. f.). Mapping and positioning for a prototype lunar rover. Proceedings of 1995 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1995.525697

Rodriguez-Seda, E. J. (2014). Decentralized trajectory tracking with collision avoidance control for teams of unmanned vehicles with constant speed. 2014 American Control Conference. doi:10.1109/acc.2014.6859184

Xiaoping Ren, & Zixing Cai. (2010). Kinematics model of unmanned driving vehicle. 2010 8th World Congress on Intelligent Control and Automation. doi:10.1109/wcica.2010.5554512

Jun, J.-Y., Saut, J.-P., & Benamar, F. (2016). Pose estimation-based path planning for a tracked mobile robot traversing uneven terrains. Robotics and Autonomous Systems, 75, 325-339. doi:10.1016/j.robot.2015.09.014

Li, Y., Ding, L., & Liu, G. (2016). Attitude-based dynamic and kinematic models for wheels of mobile robot on deformable slope. Robotics and Autonomous Systems, 75, 161-175. doi:10.1016/j.robot.2015.10.006

Mekonnen, G., Kumar, S., & Pathak, P. M. (2016). Wireless hybrid visual servoing of omnidirectional wheeled mobile robots. Robotics and Autonomous Systems, 75, 450-462. doi:10.1016/j.robot.2015.08.008

Xu, J., Wang, M., & Qiao, L. (2015). Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Engineering, 105, 54-63. doi:10.1016/j.oceaneng.2015.06.022

Gafurov, S. A., & Klochkov, E. V. (2015). Autonomous Unmanned Underwater Vehicles Development Tendencies. Procedia Engineering, 106, 141-148. doi:10.1016/j.proeng.2015.06.017

Qi, X., & Cai, Z. (2018). Three-dimensional formation control based on nonlinear small gain method for multiple underactuated underwater vehicles. Ocean Engineering, 151, 105-114. doi:10.1016/j.oceaneng.2018.01.032

Ramasamy, S., Sabatini, R., Gardi, A., & Liu, J. (2016). LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense-and-avoid. Aerospace Science and Technology, 55, 344-358. doi:10.1016/j.ast.2016.05.020

Zhu, L., Cheng, X., & Yuan, F.-G. (2016). A 3D collision avoidance strategy for UAV with physical constraints. Measurement, 77, 40-49. doi:10.1016/j.measurement.2015.09.006

Chee, K. Y., & Zhong, Z. W. (2013). Control, navigation and collision avoidance for an unmanned aerial vehicle. Sensors and Actuators A: Physical, 190, 66-76. doi:10.1016/j.sna.2012.11.017

Courbon, J., Mezouar, Y., Guénard, N., & Martinet, P. (2010). Vision-based navigation of unmanned aerial vehicles. Control Engineering Practice, 18(7), 789-799. doi:10.1016/j.conengprac.2010.03.004

Aguilar, W., & Morales, S. (2016). 3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms. Electronics, 5(4), 70. doi:10.3390/electronics5040070

Yan, F., Liu, Y.-S., & Xiao, J.-Z. (2013). Path Planning in Complex 3D Environments Using a Probabilistic Roadmap Method. International Journal of Automation and Computing, 10(6), 525-533. doi:10.1007/s11633-013-0750-9

Yeh, H.-Y., Thomas, S., Eppstein, D., & Amato, N. M. (2012). UOBPRM: A uniformly distributed obstacle-based PRM. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2012.6385875

Liang, Y., & Xu, L. (2009). Global path planning for mobile robot based genetic algorithm and modified simulated annealing algorithm. Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation - GEC ’09. doi:10.1145/1543834.1543875

Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2016). An improved ant colony algorithm for robot path planning. Soft Computing, 21(19), 5829-5839. doi:10.1007/s00500-016-2161-7

Cao, H., Sun, S., Zhang, K., & Tang, Z. (2016). Visualized trajectory planning of flexible redundant robotic arm using a novel hybrid algorithm. Optik, 127(20), 9974-9983. doi:10.1016/j.ijleo.2016.07.078

Duan, H., & Qiao, P. (2014). Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing and Cybernetics, 7(1), 24-37. doi:10.1108/ijicc-02-2014-0005

Pandey, A., & Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. Defence Technology, 13(1), 47-58. doi:10.1016/j.dt.2017.01.001

Samaniego, F., Sanchis, J., García-Nieto, S., & Simarro, R. (2019). Recursive Rewarding Modified Adaptive Cell Decomposition (RR-MACD): A Dynamic Path Planning Algorithm for UAVs. Electronics, 8(3), 306. doi:10.3390/electronics8030306

Dubins, L. E. (1957). On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents. American Journal of Mathematics, 79(3), 497. doi:10.2307/2372560

Fleury, S., Soueres, P., Laumond, J.-P., & Chatila, R. (1995). Primitives for smoothing mobile robot trajectories. IEEE Transactions on Robotics and Automation, 11(3), 441-448. doi:10.1109/70.388788

Vanegas, G., Samaniego, F., Girbes, V., Armesto, L., & Garcia-Nieto, S. (2018). Smooth 3D path planning for non-holonomic UAVs. 2018 7th International Conference on Systems and Control (ICSC). doi:10.1109/icosc.2018.8587835

Brezak, M., & Petrovic, I. (2014). Real-time Approximation of Clothoids With Bounded Error for Path Planning Applications. IEEE Transactions on Robotics, 30(2), 507-515. doi:10.1109/tro.2013.2283928

Barsky, B. A., & DeRose, T. D. (1989). Geometric continuity of parametric curves: three equivalent characterizations. IEEE Computer Graphics and Applications, 9(6), 60-69. doi:10.1109/38.41470

Kim, H., Kim, D., Shin, J.-U., Kim, H., & Myung, H. (2014). Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Engineering, 84, 37-44. doi:10.1016/j.oceaneng.2014.03.034

Isaacs, J., & Hespanha, J. (2013). Dubins Traveling Salesman Problem with Neighborhoods: A Graph-Based Approach. Algorithms, 6(1), 84-99. doi:10.3390/a6010084

Masehian, E., & Kakahaji, H. (2014). NRR: a nonholonomic random replanner for navigation of car-like robots in unknown environments. Robotica, 32(7), 1101-1123. doi:10.1017/s0263574713001276

Fraichard, T., & Scheuer, A. (2004). From Reeds and Shepp’s to Continuous-Curvature Paths. IEEE Transactions on Robotics, 20(6), 1025-1035. doi:10.1109/tro.2004.833789

Pepy, R., Lambert, A., & Mounier, H. (s. f.). Path Planning using a Dynamic Vehicle Model. 2006 2nd International Conference on Information & Communication Technologies. doi:10.1109/ictta.2006.1684472

Girbés, V., Vanegas, G., & Armesto, L. (2019). Clothoid-Based Three-Dimensional Curve for Attitude Planning. Journal of Guidance, Control, and Dynamics, 42(8), 1886-1898. doi:10.2514/1.g003551

De Lorenzis, L., Wriggers, P., & Hughes, T. J. R. (2014). Isogeometric contact: a review. GAMM-Mitteilungen, 37(1), 85-123. doi:10.1002/gamm.201410005

Pigounakis, K. G., Sapidis, N. S., & Kaklis, P. D. (1996). Fairing Spatial B-Spline Curves. Journal of Ship Research, 40(04), 351-367. doi:10.5957/jsr.1996.40.4.351

Pérez, L. H., Aguilar, M. C. M., Sánchez, N. M., & Montesinos, A. F. (2018). Path Planning Based on Parametric Curves. Advanced Path Planning for Mobile Entities. doi:10.5772/intechopen.72574

Huh, U.-Y., & Chang, S.-R. (2014). A G2 Continuous Path-smoothing Algorithm Using Modified Quadratic Polynomial Interpolation. International Journal of Advanced Robotic Systems, 11(2), 25. doi:10.5772/57340

Chang, S.-R., & Huh, U.-Y. (2014). A Collision-Free G2 Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation. International Journal of Advanced Robotic Systems, 11(12), 194. doi:10.5772/59463

Yaochu Jin, & Sendhoff, B. (2008). Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(3), 397-415. doi:10.1109/tsmcc.2008.919172

Velasco-Carrau, J., García-Nieto, S., Salcedo, J. V., & Bishop, R. H. (2016). Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control, and Dynamics, 39(2), 372-389. doi:10.2514/1.g001294

Honig, E., Schucking, E. L., & Vishveshwara, C. V. (1974). Motion of charged particles in homogeneous electromagnetic fields. Journal of Mathematical Physics, 15(6), 774-781. doi:10.1063/1.1666728

Iyer, B. R., & Vishveshwara, C. V. (1988). The Frenet-Serret formalism and black holes in higher dimensions. Classical and Quantum Gravity, 5(7), 961-970. doi:10.1088/0264-9381/5/7/005

Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108

Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem