- -

A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers

Mostrar el registro completo del ítem

Guillén-Navarro, MA.; Martínez-España, R.; Bueno-Crespo, A.; Morales-García, J.; Ayuso, B.; Cecilia-Canales, JM. (2020). A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers. Sensors. 20(24):1-15. https://doi.org/10.3390/s20247129

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167858

Ficheros en el ítem

Metadatos del ítem

Título: A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers
Autor: Guillén-Navarro, Miguel A. Martínez-España, Raquel Bueno-Crespo, Andrés Morales-García, Juan Ayuso, Belén Cecilia-Canales, José María
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Precision agriculture is a growing sector that improves traditional agricultural processes through the use of new technologies. In southeast Spain, farmers are continuously fighting against harsh conditions caused by ...[+]
Palabras clave: Multivariate LSTM based approach , IoT system , Intelligent systems , Precision agriculture
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s20247129
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s20247129
Código del Proyecto:
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
...[+]
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/AEI//RTC-2017-6389-5/
info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
info:eu-repo/grantAgreement/AEI//RTC2019-007159-5/ES/Desarrollo de infraestructuras IoT de altas prestaciones contra el cambio climático basadas en inteligencia artificial/
info:eu-repo/grantAgreement/Generalitat Valenciana//AICO%2F2020%2F302/ES/Arquitectura basada en Fog Computing para la optimización de las comunicaciones en entornos IoT/
[-]
Agradecimientos:
This work has been partially supported by the Spanish Ministry of Science and Innovation, under the Ramon y Cajal Program (Grant No. RYC2018-025580-I) and under grants RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5, ...[+]
Tipo: Artículo

References

Melgarejo-Moreno, J., López-Ortiz, M.-I., & Fernández-Aracil, P. (2019). Water distribution management in South-East Spain: A guaranteed system in a context of scarce resources. Science of The Total Environment, 648, 1384-1393. doi:10.1016/j.scitotenv.2018.08.263

Ferrández-Pastor, F., García-Chamizo, J., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors, 18(6), 1731. doi:10.3390/s18061731

Liaghat. (2010). A Review: The Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50-55. doi:10.3844/ajabssp.2010.50.55 [+]
Melgarejo-Moreno, J., López-Ortiz, M.-I., & Fernández-Aracil, P. (2019). Water distribution management in South-East Spain: A guaranteed system in a context of scarce resources. Science of The Total Environment, 648, 1384-1393. doi:10.1016/j.scitotenv.2018.08.263

Ferrández-Pastor, F., García-Chamizo, J., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors, 18(6), 1731. doi:10.3390/s18061731

Liaghat. (2010). A Review: The Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50-55. doi:10.3844/ajabssp.2010.50.55

Nelson, G. C., van der Mensbrugghe, D., Ahammad, H., Blanc, E., Calvin, K., Hasegawa, T., … Willenbockel, D. (2013). Agriculture and climate change in global scenarios: why don’t the models agree. Agricultural Economics, 45(1), 85-101. doi:10.1111/agec.12091

Crookston, R. K. (2006). A Top 10 List of Developments and Issues Impacting Crop Management and Ecology During the Past 50 Years. Crop Science, 46(5), 2253-2262. doi:10.2135/cropsci2005.11.0416gas

Dutta, R., Morshed, A., Aryal, J., D’Este, C., & Das, A. (2014). Development of an intelligent environmental knowledge system for sustainable agricultural decision support. Environmental Modelling & Software, 52, 264-272. doi:10.1016/j.envsoft.2013.10.004

Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918-929. doi:10.1016/j.jhydrol.2018.04.065

Sahoo, S., Russo, T. A., Elliott, J., & Foster, I. (2017). Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resources Research, 53(5), 3878-3895. doi:10.1002/2016wr019933

Coopersmith, E. J., Minsker, B. S., Wenzel, C. E., & Gilmore, B. J. (2014). Machine learning assessments of soil drying for agricultural planning. Computers and Electronics in Agriculture, 104, 93-104. doi:10.1016/j.compag.2014.04.004

Mohammadi, K., Shamshirband, S., Motamedi, S., Petković, D., Hashim, R., & Gocic, M. (2015). Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214-225. doi:10.1016/j.compag.2015.08.008

Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, 71-78. doi:10.1016/j.compag.2017.01.027

Jin, X.-B., Yu, X.-H., Wang, X.-Y., Bai, Y.-T., Su, T.-L., & Kong, J.-L. (2020). Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System. Sustainability, 12(4), 1433. doi:10.3390/su12041433

Castañeda-Miranda, A., & Castaño-Meneses, V. M. (2020). Internet of things for smart farming and frost intelligent control in greenhouses. Computers and Electronics in Agriculture, 176, 105614. doi:10.1016/j.compag.2020.105614

Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007

Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-Art Internet of Things in Protected Agriculture. Sensors, 19(8), 1833. doi:10.3390/s19081833

Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors, 17(8), 1781. doi:10.3390/s17081781

Guillén‐Navarro, M. A., Martínez‐España, R., López, B., & Cecilia, J. M. (2019). A high‐performance IoT solution to reduce frost damages in stone fruits. Concurrency and Computation: Practice and Experience, 33(2). doi:10.1002/cpe.5299

Guillén, M. A., Llanes, A., Imbernón, B., Martínez-España, R., Bueno-Crespo, A., Cano, J.-C., & Cecilia, J. M. (2020). Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. The Journal of Supercomputing, 77(1), 818-840. doi:10.1007/s11227-020-03288-w

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem