Mostrar el registro sencillo del ítem
dc.contributor.author | Guillén-Navarro, Miguel A. | es_ES |
dc.contributor.author | Martínez-España, Raquel | es_ES |
dc.contributor.author | Bueno-Crespo, Andrés | es_ES |
dc.contributor.author | Morales-García, Juan | es_ES |
dc.contributor.author | Ayuso, Belén | es_ES |
dc.contributor.author | Cecilia-Canales, José María | es_ES |
dc.date.accessioned | 2021-06-12T03:33:30Z | |
dc.date.available | 2021-06-12T03:33:30Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167858 | |
dc.description.abstract | [EN] Precision agriculture is a growing sector that improves traditional agricultural processes through the use of new technologies. In southeast Spain, farmers are continuously fighting against harsh conditions caused by the effects of climate change. Among these problems, the great variability of temperatures (up to 20 degrees C in the same day) stands out. This causes the stone fruit trees to flower prematurely and the low winter temperatures freeze the flower causing the loss of the crop. Farmers use anti-freeze techniques to prevent crop loss and the most widely used techniques are those that use water irrigation as they are cheaper than other techniques. However, these techniques waste too much water and it is a scarce resource, especially in this area. In this article, we propose a novel intelligent Internet of Things (IoT) monitoring system to optimize the use of water in these anti-frost techniques while minimizing crop loss. The intelligent component of the IoT system is designed using an approach based on a multivariate Long Short-Term Memory (LSTM) model, designed to predict low temperatures. We compare the proposed approach of multivariate model with the univariate counterpart version to figure out which model obtains better accuracy to predict low temperatures. An accurate prediction of low temperatures would translate into significant water savings, as anti-frost techniques would not be activated without being necessary. Our experimental results show that the proposed multivariate LSTM approach improves the univariate counterpart version, obtaining an average quadratic error no greater than 0.65 degrees C and a coefficient of determination R2 greater than 0.97. The proposed system has been deployed and is currently operating in a real environment obtained satisfactory performance. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Science and Innovation, under the Ramon y Cajal Program (Grant No. RYC2018-025580-I) and under grants RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5, by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by the "Conselleria de Educacion, Investigacion, Cultura y Deporte, Direccio General de Ciencia i Investigacio, Proyectos AICO/2020", Spain, under Grant AICO/2020/302. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Multivariate LSTM based approach | es_ES |
dc.subject | IoT system | es_ES |
dc.subject | Intelligent systems | es_ES |
dc.subject | Precision agriculture | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s20247129 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTC-2017-6389-5/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTC2019-007159-5/ES/Desarrollo de infraestructuras IoT de altas prestaciones contra el cambio climático basadas en inteligencia artificial/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//AICO%2F2020%2F302/ES/Arquitectura basada en Fog Computing para la optimización de las comunicaciones en entornos IoT/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Guillén-Navarro, MA.; Martínez-España, R.; Bueno-Crespo, A.; Morales-García, J.; Ayuso, B.; Cecilia-Canales, JM. (2020). A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers. Sensors. 20(24):1-15. https://doi.org/10.3390/s20247129 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s20247129 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 33322717 | es_ES |
dc.identifier.pmcid | PMC7764077 | es_ES |
dc.relation.pasarela | S\425202 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Melgarejo-Moreno, J., López-Ortiz, M.-I., & Fernández-Aracil, P. (2019). Water distribution management in South-East Spain: A guaranteed system in a context of scarce resources. Science of The Total Environment, 648, 1384-1393. doi:10.1016/j.scitotenv.2018.08.263 | es_ES |
dc.description.references | Ferrández-Pastor, F., García-Chamizo, J., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors, 18(6), 1731. doi:10.3390/s18061731 | es_ES |
dc.description.references | Liaghat. (2010). A Review: The Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50-55. doi:10.3844/ajabssp.2010.50.55 | es_ES |
dc.description.references | Nelson, G. C., van der Mensbrugghe, D., Ahammad, H., Blanc, E., Calvin, K., Hasegawa, T., … Willenbockel, D. (2013). Agriculture and climate change in global scenarios: why don’t the models agree. Agricultural Economics, 45(1), 85-101. doi:10.1111/agec.12091 | es_ES |
dc.description.references | Crookston, R. K. (2006). A Top 10 List of Developments and Issues Impacting Crop Management and Ecology During the Past 50 Years. Crop Science, 46(5), 2253-2262. doi:10.2135/cropsci2005.11.0416gas | es_ES |
dc.description.references | Dutta, R., Morshed, A., Aryal, J., D’Este, C., & Das, A. (2014). Development of an intelligent environmental knowledge system for sustainable agricultural decision support. Environmental Modelling & Software, 52, 264-272. doi:10.1016/j.envsoft.2013.10.004 | es_ES |
dc.description.references | Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918-929. doi:10.1016/j.jhydrol.2018.04.065 | es_ES |
dc.description.references | Sahoo, S., Russo, T. A., Elliott, J., & Foster, I. (2017). Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resources Research, 53(5), 3878-3895. doi:10.1002/2016wr019933 | es_ES |
dc.description.references | Coopersmith, E. J., Minsker, B. S., Wenzel, C. E., & Gilmore, B. J. (2014). Machine learning assessments of soil drying for agricultural planning. Computers and Electronics in Agriculture, 104, 93-104. doi:10.1016/j.compag.2014.04.004 | es_ES |
dc.description.references | Mohammadi, K., Shamshirband, S., Motamedi, S., Petković, D., Hashim, R., & Gocic, M. (2015). Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214-225. doi:10.1016/j.compag.2015.08.008 | es_ES |
dc.description.references | Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, 71-78. doi:10.1016/j.compag.2017.01.027 | es_ES |
dc.description.references | Jin, X.-B., Yu, X.-H., Wang, X.-Y., Bai, Y.-T., Su, T.-L., & Kong, J.-L. (2020). Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System. Sustainability, 12(4), 1433. doi:10.3390/su12041433 | es_ES |
dc.description.references | Castañeda-Miranda, A., & Castaño-Meneses, V. M. (2020). Internet of things for smart farming and frost intelligent control in greenhouses. Computers and Electronics in Agriculture, 176, 105614. doi:10.1016/j.compag.2020.105614 | es_ES |
dc.description.references | Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007 | es_ES |
dc.description.references | Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-Art Internet of Things in Protected Agriculture. Sensors, 19(8), 1833. doi:10.3390/s19081833 | es_ES |
dc.description.references | Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors, 17(8), 1781. doi:10.3390/s17081781 | es_ES |
dc.description.references | Guillén‐Navarro, M. A., Martínez‐España, R., López, B., & Cecilia, J. M. (2019). A high‐performance IoT solution to reduce frost damages in stone fruits. Concurrency and Computation: Practice and Experience, 33(2). doi:10.1002/cpe.5299 | es_ES |
dc.description.references | Guillén, M. A., Llanes, A., Imbernón, B., Martínez-España, R., Bueno-Crespo, A., Cano, J.-C., & Cecilia, J. M. (2020). Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. The Journal of Supercomputing, 77(1), 818-840. doi:10.1007/s11227-020-03288-w | es_ES |