- -

A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guillén-Navarro, Miguel A. es_ES
dc.contributor.author Martínez-España, Raquel es_ES
dc.contributor.author Bueno-Crespo, Andrés es_ES
dc.contributor.author Morales-García, Juan es_ES
dc.contributor.author Ayuso, Belén es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2021-06-12T03:33:30Z
dc.date.available 2021-06-12T03:33:30Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167858
dc.description.abstract [EN] Precision agriculture is a growing sector that improves traditional agricultural processes through the use of new technologies. In southeast Spain, farmers are continuously fighting against harsh conditions caused by the effects of climate change. Among these problems, the great variability of temperatures (up to 20 degrees C in the same day) stands out. This causes the stone fruit trees to flower prematurely and the low winter temperatures freeze the flower causing the loss of the crop. Farmers use anti-freeze techniques to prevent crop loss and the most widely used techniques are those that use water irrigation as they are cheaper than other techniques. However, these techniques waste too much water and it is a scarce resource, especially in this area. In this article, we propose a novel intelligent Internet of Things (IoT) monitoring system to optimize the use of water in these anti-frost techniques while minimizing crop loss. The intelligent component of the IoT system is designed using an approach based on a multivariate Long Short-Term Memory (LSTM) model, designed to predict low temperatures. We compare the proposed approach of multivariate model with the univariate counterpart version to figure out which model obtains better accuracy to predict low temperatures. An accurate prediction of low temperatures would translate into significant water savings, as anti-frost techniques would not be activated without being necessary. Our experimental results show that the proposed multivariate LSTM approach improves the univariate counterpart version, obtaining an average quadratic error no greater than 0.65 degrees C and a coefficient of determination R2 greater than 0.97. The proposed system has been deployed and is currently operating in a real environment obtained satisfactory performance. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministry of Science and Innovation, under the Ramon y Cajal Program (Grant No. RYC2018-025580-I) and under grants RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5, by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by the "Conselleria de Educacion, Investigacion, Cultura y Deporte, Direccio General de Ciencia i Investigacio, Proyectos AICO/2020", Spain, under Grant AICO/2020/302. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multivariate LSTM based approach es_ES
dc.subject IoT system es_ES
dc.subject Intelligent systems es_ES
dc.subject Precision agriculture es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20247129 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC-2017-6389-5/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC2019-007159-5/ES/Desarrollo de infraestructuras IoT de altas prestaciones contra el cambio climático basadas en inteligencia artificial/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//AICO%2F2020%2F302/ES/Arquitectura basada en Fog Computing para la optimización de las comunicaciones en entornos IoT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Guillén-Navarro, MA.; Martínez-España, R.; Bueno-Crespo, A.; Morales-García, J.; Ayuso, B.; Cecilia-Canales, JM. (2020). A Decision Support System for Water Optimization in Anti-Frost Techniques by Sprinklers. Sensors. 20(24):1-15. https://doi.org/10.3390/s20247129 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20247129 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 33322717 es_ES
dc.identifier.pmcid PMC7764077 es_ES
dc.relation.pasarela S\425202 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Melgarejo-Moreno, J., López-Ortiz, M.-I., & Fernández-Aracil, P. (2019). Water distribution management in South-East Spain: A guaranteed system in a context of scarce resources. Science of The Total Environment, 648, 1384-1393. doi:10.1016/j.scitotenv.2018.08.263 es_ES
dc.description.references Ferrández-Pastor, F., García-Chamizo, J., Nieto-Hidalgo, M., & Mora-Martínez, J. (2018). Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors, 18(6), 1731. doi:10.3390/s18061731 es_ES
dc.description.references Liaghat. (2010). A Review: The Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50-55. doi:10.3844/ajabssp.2010.50.55 es_ES
dc.description.references Nelson, G. C., van der Mensbrugghe, D., Ahammad, H., Blanc, E., Calvin, K., Hasegawa, T., … Willenbockel, D. (2013). Agriculture and climate change in global scenarios: why don’t the models agree. Agricultural Economics, 45(1), 85-101. doi:10.1111/agec.12091 es_ES
dc.description.references Crookston, R. K. (2006). A Top 10 List of Developments and Issues Impacting Crop Management and Ecology During the Past 50 Years. Crop Science, 46(5), 2253-2262. doi:10.2135/cropsci2005.11.0416gas es_ES
dc.description.references Dutta, R., Morshed, A., Aryal, J., D’Este, C., & Das, A. (2014). Development of an intelligent environmental knowledge system for sustainable agricultural decision support. Environmental Modelling & Software, 52, 264-272. doi:10.1016/j.envsoft.2013.10.004 es_ES
dc.description.references Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918-929. doi:10.1016/j.jhydrol.2018.04.065 es_ES
dc.description.references Sahoo, S., Russo, T. A., Elliott, J., & Foster, I. (2017). Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resources Research, 53(5), 3878-3895. doi:10.1002/2016wr019933 es_ES
dc.description.references Coopersmith, E. J., Minsker, B. S., Wenzel, C. E., & Gilmore, B. J. (2014). Machine learning assessments of soil drying for agricultural planning. Computers and Electronics in Agriculture, 104, 93-104. doi:10.1016/j.compag.2014.04.004 es_ES
dc.description.references Mohammadi, K., Shamshirband, S., Motamedi, S., Petković, D., Hashim, R., & Gocic, M. (2015). Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214-225. doi:10.1016/j.compag.2015.08.008 es_ES
dc.description.references Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136, 71-78. doi:10.1016/j.compag.2017.01.027 es_ES
dc.description.references Jin, X.-B., Yu, X.-H., Wang, X.-Y., Bai, Y.-T., Su, T.-L., & Kong, J.-L. (2020). Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System. Sustainability, 12(4), 1433. doi:10.3390/su12041433 es_ES
dc.description.references Castañeda-Miranda, A., & Castaño-Meneses, V. M. (2020). Internet of things for smart farming and frost intelligent control in greenhouses. Computers and Electronics in Agriculture, 176, 105614. doi:10.1016/j.compag.2020.105614 es_ES
dc.description.references Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007 es_ES
dc.description.references Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-Art Internet of Things in Protected Agriculture. Sensors, 19(8), 1833. doi:10.3390/s19081833 es_ES
dc.description.references Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors, 17(8), 1781. doi:10.3390/s17081781 es_ES
dc.description.references Guillén‐Navarro, M. A., Martínez‐España, R., López, B., & Cecilia, J. M. (2019). A high‐performance IoT solution to reduce frost damages in stone fruits. Concurrency and Computation: Practice and Experience, 33(2). doi:10.1002/cpe.5299 es_ES
dc.description.references Guillén, M. A., Llanes, A., Imbernón, B., Martínez-España, R., Bueno-Crespo, A., Cano, J.-C., & Cecilia, J. M. (2020). Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. The Journal of Supercomputing, 77(1), 818-840. doi:10.1007/s11227-020-03288-w es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem