- -

A New Ammonium Smart Sensor with Interference Rejection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A New Ammonium Smart Sensor with Interference Rejection

Mostrar el registro completo del ítem

Capella Hernández, JV.; Bonastre Pina, AM.; Campelo Rivadulla, JC.; Ors Carot, R.; Peris Tortajada, M. (2020). A New Ammonium Smart Sensor with Interference Rejection. Sensors. 20(24):1-17. https://doi.org/10.3390/s20247102

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167870

Ficheros en el ítem

Metadatos del ítem

Título: A New Ammonium Smart Sensor with Interference Rejection
Autor: Capella Hernández, Juan Vicente Bonastre Pina, Alberto Miguel Campelo Rivadulla, José Carlos Ors Carot, Rafael Peris Tortajada, Miguel
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] In many water samples, it is important to determine the ammonium concentration in order to obtain an overall picture of the environmental impact of pollutants and human actions, as well as to detect the stage of ...[+]
Palabras clave: Smart ammonium sensor , In-Line water monitoring , Wireless sensor networks , Interference tolerance , Expert system , Triple modular redundancy
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s20247102
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s20247102
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2016-80303-C2-1-P/ES/HACIA EL HOSPITAL INTELIGENTE: INVESTIGACION EN EL DISEÑO DE UNA PLATAFORMA BASADA EN INTERNET DE LAS COSAS Y SU APLICACION EN LA MEJORA DEL CUMPLIMIENTO DE HIGIENE DE MANO/
info:eu-repo/grantAgreement/MICINN//TIN2011-28435-C03-01/ES/INVESTIGACION EN LA MEJORA DE LA CONFIABILIDAD DE APLICACIONES BASADAS EN WSN MEDIANTE EL DESARROLLO DE UNA PLATAFORMA HIBRIDA DE MONITORIZACION/
Agradecimientos:
This research was supported by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P.
Tipo: Artículo

References

Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martinez, Y., & Campíns-Falcó, P. (2006). A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends in Analytical Chemistry, 25(3), 282-290. doi:10.1016/j.trac.2005.12.002

Zhu, Y., Chen, J., Yuan, D., Yang, Z., Shi, X., Li, H., … Ran, L. (2019). Development of analytical methods for ammonium determination in seawater over the last two decades. TrAC Trends in Analytical Chemistry, 119, 115627. doi:10.1016/j.trac.2019.115627

Liu, J. (2020). New directions in sensor technology. TrAC Trends in Analytical Chemistry, 124, 115818. doi:10.1016/j.trac.2020.115818 [+]
Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martinez, Y., & Campíns-Falcó, P. (2006). A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends in Analytical Chemistry, 25(3), 282-290. doi:10.1016/j.trac.2005.12.002

Zhu, Y., Chen, J., Yuan, D., Yang, Z., Shi, X., Li, H., … Ran, L. (2019). Development of analytical methods for ammonium determination in seawater over the last two decades. TrAC Trends in Analytical Chemistry, 119, 115627. doi:10.1016/j.trac.2019.115627

Liu, J. (2020). New directions in sensor technology. TrAC Trends in Analytical Chemistry, 124, 115818. doi:10.1016/j.trac.2020.115818

Yaroshenko, I., Kirsanov, D., Marjanovic, M., Lieberzeit, P. A., Korostynska, O., Mason, A., … Legin, A. (2020). Real-Time Water Quality Monitoring with Chemical Sensors. Sensors, 20(12), 3432. doi:10.3390/s20123432

Martı́nez-Máñez, R., Soto, J., Garcia-Breijo, E., Gil, L., Ibáñez, J., & Llobet, E. (2005). An «electronic tongue» design for the qualitative analysis of natural waters. Sensors and Actuators B: Chemical, 104(2), 302-307. doi:10.1016/j.snb.2004.05.022

Legin, A. ., Rudnitskaya, A. ., Vlasov, Y. ., Di Natale, C., & D’Amico, A. (1999). The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors and Actuators B: Chemical, 58(1-3), 464-468. doi:10.1016/s0925-4005(99)00127-6

Mueller, A. V., & Hemond, H. F. (2013). Extended artificial neural networks: Incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels. Talanta, 117, 112-118. doi:10.1016/j.talanta.2013.08.045

Wen, Y., Mao, Y., Kang, Z., & Luo, Q. (2019). Application of an ammonium ion-selective electrode for the real-time measurement of ammonia nitrogen based on pH and temperature compensation. Measurement, 137, 98-101. doi:10.1016/j.measurement.2019.01.031

Handbook of Electrochemistry. (2007). doi:10.1016/b978-0-444-51958-0.x5000-9

Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure and Applied Chemistry, 72(10), 1851-2082. doi:10.1351/pac200072101851

Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2015). An interference-tolerant nitrate smart sensor for Wireless Sensor Network applications. Sensors and Actuators B: Chemical, 213, 534-540. doi:10.1016/j.snb.2015.02.125

Choudhary, J., Balasubramanian, P., Varghese, D., Singh, D., & Maskell, D. (2019). Generalized Majority Voter Design Method for N-Modular Redundant Systems Used in Mission- and Safety-Critical Applications. Computers, 8(1), 10. doi:10.3390/computers8010010

Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2014). A step forward in the in-line river monitoring of nitrate by means of a wireless sensor network. Sensors and Actuators B: Chemical, 195, 396-403. doi:10.1016/j.snb.2014.01.039

Cuartero, M., Colozza, N., Fernández-Pérez, B. M., & Crespo, G. A. (2020). Why ammonium detection is particularly challenging but insightful with ionophore-based potentiometric sensors – an overview of the progress in the last 20 years. The Analyst, 145(9), 3188-3210. doi:10.1039/d0an00327a

Bembe, M., Abu-Mahfouz, A., Masonta, M., & Ngqondi, T. (2019). A survey on low-power wide area networks for IoT applications. Telecommunication Systems, 71(2), 249-274. doi:10.1007/s11235-019-00557-9

Freiser, H. (Ed.). (1980). Ion-Selective Electrodes in Analytical Chemistry. doi:10.1007/978-1-4684-3776-8

Peris, M., Bonastre, A., & Ors, R. (1998). Distributed expert system for the monitoring and control of chemical processes. Laboratory Robotics and Automation, 10(3), 163-168. doi:10.1002/(sici)1098-2728(1998)10:3<163::aid-lra6>3.0.co;2-2

Carminati, M., Turolla, A., Mezzera, L., Di Mauro, M., Tizzoni, M., Pani, G., … Antonelli, M. (2020). A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors, 20(4), 1125. doi:10.3390/s20041125

Nakas, C., Kandris, D., & Visvardis, G. (2020). Energy Efficient Routing in Wireless Sensor Networks: A Comprehensive Survey. Algorithms, 13(3), 72. doi:10.3390/a13030072

Capella, J. V., Bonastre, A., Campelo, J. C., Ors, R., & Peris, M. (2020). IoT & environmental analytical chemistry: Towards a profitable symbiosis. Trends in Environmental Analytical Chemistry, 27, e00095. doi:10.1016/j.teac.2020.e00095

Pretsch, E. (2007). The new wave of ion-selective electrodes. TrAC Trends in Analytical Chemistry, 26(1), 46-51. doi:10.1016/j.trac.2006.10.006

STM Microelectronics https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x2/stm32l422cb.html

Analog Devices https://www.analog.com/media/en/technical-documentation/data-sheets/AD524.pdf

Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2010). A Wireless Sensor Network approach for distributed in-line chemical analysis of water. Talanta, 80(5), 1789-1798. doi:10.1016/j.talanta.2009.10.025

Bonastre, A., Capella, J. V., Ors, R., & Peris, M. (2012). In-line monitoring of chemical-analysis processes using Wireless Sensor Networks. TrAC Trends in Analytical Chemistry, 34, 111-125. doi:10.1016/j.trac.2011.11.009

Mei-Chen Hsueh, Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques and tools. Computer, 30(4), 75-82. doi:10.1109/2.585157

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem