- -

A New Ammonium Smart Sensor with Interference Rejection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A New Ammonium Smart Sensor with Interference Rejection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Capella Hernández, Juan Vicente es_ES
dc.contributor.author Bonastre Pina, Alberto Miguel es_ES
dc.contributor.author Campelo Rivadulla, José Carlos es_ES
dc.contributor.author Ors Carot, Rafael es_ES
dc.contributor.author Peris Tortajada, Miguel es_ES
dc.date.accessioned 2021-06-12T03:33:53Z
dc.date.available 2021-06-12T03:33:53Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167870
dc.description.abstract [EN] In many water samples, it is important to determine the ammonium concentration in order to obtain an overall picture of the environmental impact of pollutants and human actions, as well as to detect the stage of eutrophization. Ion selective electrodes (ISEs) have been commonly utilized for this purpose, although the presence of interfering ions (potassium and sodium in the case of NH4+-ISE) represents a handicap in terms of the measurement quality. Furthermore, random malfunctions may give rise to incorrect measurements. Bearing all of that in mind, a smart ammonium sensor with enhanced features has been developed and tested in water samples, as demonstrated and commented on in detail following the presentation of the complete set of experimental measurements that have been successfully carried out. This has been achieved through the implementation of an expert system that supervises a set of ISEs in order to (a) avoid random failures and (b) reject interferences. Our approach may also be suitable for in-line monitoring of the water quality through the implementation of wireless sensor networks. es_ES
dc.description.sponsorship This research was supported by the Spanish Ministerio de Economia y Competitividad, grant number DPI2016-80303-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Smart ammonium sensor es_ES
dc.subject In-Line water monitoring es_ES
dc.subject Wireless sensor networks es_ES
dc.subject Interference tolerance es_ES
dc.subject Expert system es_ES
dc.subject Triple modular redundancy es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A New Ammonium Smart Sensor with Interference Rejection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20247102 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-80303-C2-1-P/ES/HACIA EL HOSPITAL INTELIGENTE: INVESTIGACION EN EL DISEÑO DE UNA PLATAFORMA BASADA EN INTERNET DE LAS COSAS Y SU APLICACION EN LA MEJORA DEL CUMPLIMIENTO DE HIGIENE DE MANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-28435-C03-01/ES/INVESTIGACION EN LA MEJORA DE LA CONFIABILIDAD DE APLICACIONES BASADAS EN WSN MEDIANTE EL DESARROLLO DE UNA PLATAFORMA HIBRIDA DE MONITORIZACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Capella Hernández, JV.; Bonastre Pina, AM.; Campelo Rivadulla, JC.; Ors Carot, R.; Peris Tortajada, M. (2020). A New Ammonium Smart Sensor with Interference Rejection. Sensors. 20(24):1-17. https://doi.org/10.3390/s20247102 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20247102 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 33322346 es_ES
dc.identifier.pmcid PMC7764669 es_ES
dc.relation.pasarela S\423976 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martinez, Y., & Campíns-Falcó, P. (2006). A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends in Analytical Chemistry, 25(3), 282-290. doi:10.1016/j.trac.2005.12.002 es_ES
dc.description.references Zhu, Y., Chen, J., Yuan, D., Yang, Z., Shi, X., Li, H., … Ran, L. (2019). Development of analytical methods for ammonium determination in seawater over the last two decades. TrAC Trends in Analytical Chemistry, 119, 115627. doi:10.1016/j.trac.2019.115627 es_ES
dc.description.references Liu, J. (2020). New directions in sensor technology. TrAC Trends in Analytical Chemistry, 124, 115818. doi:10.1016/j.trac.2020.115818 es_ES
dc.description.references Yaroshenko, I., Kirsanov, D., Marjanovic, M., Lieberzeit, P. A., Korostynska, O., Mason, A., … Legin, A. (2020). Real-Time Water Quality Monitoring with Chemical Sensors. Sensors, 20(12), 3432. doi:10.3390/s20123432 es_ES
dc.description.references Martı́nez-Máñez, R., Soto, J., Garcia-Breijo, E., Gil, L., Ibáñez, J., & Llobet, E. (2005). An «electronic tongue» design for the qualitative analysis of natural waters. Sensors and Actuators B: Chemical, 104(2), 302-307. doi:10.1016/j.snb.2004.05.022 es_ES
dc.description.references Legin, A. ., Rudnitskaya, A. ., Vlasov, Y. ., Di Natale, C., & D’Amico, A. (1999). The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors and Actuators B: Chemical, 58(1-3), 464-468. doi:10.1016/s0925-4005(99)00127-6 es_ES
dc.description.references Mueller, A. V., & Hemond, H. F. (2013). Extended artificial neural networks: Incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels. Talanta, 117, 112-118. doi:10.1016/j.talanta.2013.08.045 es_ES
dc.description.references Wen, Y., Mao, Y., Kang, Z., & Luo, Q. (2019). Application of an ammonium ion-selective electrode for the real-time measurement of ammonia nitrogen based on pH and temperature compensation. Measurement, 137, 98-101. doi:10.1016/j.measurement.2019.01.031 es_ES
dc.description.references Handbook of Electrochemistry. (2007). doi:10.1016/b978-0-444-51958-0.x5000-9 es_ES
dc.description.references Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure and Applied Chemistry, 72(10), 1851-2082. doi:10.1351/pac200072101851 es_ES
dc.description.references Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2015). An interference-tolerant nitrate smart sensor for Wireless Sensor Network applications. Sensors and Actuators B: Chemical, 213, 534-540. doi:10.1016/j.snb.2015.02.125 es_ES
dc.description.references Choudhary, J., Balasubramanian, P., Varghese, D., Singh, D., & Maskell, D. (2019). Generalized Majority Voter Design Method for N-Modular Redundant Systems Used in Mission- and Safety-Critical Applications. Computers, 8(1), 10. doi:10.3390/computers8010010 es_ES
dc.description.references Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2014). A step forward in the in-line river monitoring of nitrate by means of a wireless sensor network. Sensors and Actuators B: Chemical, 195, 396-403. doi:10.1016/j.snb.2014.01.039 es_ES
dc.description.references Cuartero, M., Colozza, N., Fernández-Pérez, B. M., & Crespo, G. A. (2020). Why ammonium detection is particularly challenging but insightful with ionophore-based potentiometric sensors – an overview of the progress in the last 20 years. The Analyst, 145(9), 3188-3210. doi:10.1039/d0an00327a es_ES
dc.description.references Bembe, M., Abu-Mahfouz, A., Masonta, M., & Ngqondi, T. (2019). A survey on low-power wide area networks for IoT applications. Telecommunication Systems, 71(2), 249-274. doi:10.1007/s11235-019-00557-9 es_ES
dc.description.references Freiser, H. (Ed.). (1980). Ion-Selective Electrodes in Analytical Chemistry. doi:10.1007/978-1-4684-3776-8 es_ES
dc.description.references Peris, M., Bonastre, A., & Ors, R. (1998). Distributed expert system for the monitoring and control of chemical processes. Laboratory Robotics and Automation, 10(3), 163-168. doi:10.1002/(sici)1098-2728(1998)10:3<163::aid-lra6>3.0.co;2-2 es_ES
dc.description.references Carminati, M., Turolla, A., Mezzera, L., Di Mauro, M., Tizzoni, M., Pani, G., … Antonelli, M. (2020). A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors, 20(4), 1125. doi:10.3390/s20041125 es_ES
dc.description.references Nakas, C., Kandris, D., & Visvardis, G. (2020). Energy Efficient Routing in Wireless Sensor Networks: A Comprehensive Survey. Algorithms, 13(3), 72. doi:10.3390/a13030072 es_ES
dc.description.references Capella, J. V., Bonastre, A., Campelo, J. C., Ors, R., & Peris, M. (2020). IoT & environmental analytical chemistry: Towards a profitable symbiosis. Trends in Environmental Analytical Chemistry, 27, e00095. doi:10.1016/j.teac.2020.e00095 es_ES
dc.description.references Pretsch, E. (2007). The new wave of ion-selective electrodes. TrAC Trends in Analytical Chemistry, 26(1), 46-51. doi:10.1016/j.trac.2006.10.006 es_ES
dc.description.references STM Microelectronics https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x2/stm32l422cb.html es_ES
dc.description.references Analog Devices https://www.analog.com/media/en/technical-documentation/data-sheets/AD524.pdf es_ES
dc.description.references Capella, J. V., Bonastre, A., Ors, R., & Peris, M. (2010). A Wireless Sensor Network approach for distributed in-line chemical analysis of water. Talanta, 80(5), 1789-1798. doi:10.1016/j.talanta.2009.10.025 es_ES
dc.description.references Bonastre, A., Capella, J. V., Ors, R., & Peris, M. (2012). In-line monitoring of chemical-analysis processes using Wireless Sensor Networks. TrAC Trends in Analytical Chemistry, 34, 111-125. doi:10.1016/j.trac.2011.11.009 es_ES
dc.description.references Mei-Chen Hsueh, Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques and tools. Computer, 30(4), 75-82. doi:10.1109/2.585157 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem