- -

Spontaneous activation under atrial fibrosis: A model using complex order derivatives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spontaneous activation under atrial fibrosis: A model using complex order derivatives

Mostrar el registro completo del ítem

Ugarte, JP.; Tobón, C.; Saiz Rodríguez, FJ.; Mendes Lopes, A.; Tenreiro Machado, JA. (2021). Spontaneous activation under atrial fibrosis: A model using complex order derivatives. Communications in Nonlinear Science and Numerical Simulation. 95:1-12. https://doi.org/10.1016/j.cnsns.2020.105618

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167874

Ficheros en el ítem

Metadatos del ítem

Título: Spontaneous activation under atrial fibrosis: A model using complex order derivatives
Autor: Ugarte, Juan P. Tobón, Catalina Saiz Rodríguez, Francisco Javier Mendes Lopes, Antonio Tenreiro Machado, José A.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] The computational modeling of the cardiac electrophysiology allows assertive and quantitative study of the atrial fibrosis under fibrillation conditions. The cardiac electrical propagation is described by the so-called ...[+]
Palabras clave: Atrial fibrosis , Spontaneous activation , Complex order derivatives , Stability analysis
Derechos de uso: Cerrado
Fuente:
Communications in Nonlinear Science and Numerical Simulation. (issn: 1007-5704 )
DOI: 10.1016/j.cnsns.2020.105618
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cnsns.2020.105618
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043/ES/MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/
Agradecimientos:
This work was partially supported by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEO/2020/043).
Tipo: Artículo

References

Corradi, D. (2014). Atrial fibrillation from the pathologist’s perspective. Cardiovascular Pathology, 23(2), 71-84. doi:10.1016/j.carpath.2013.12.001

Kallergis, E. M., Goudis, C. A., & Vardas, P. E. (2014). Atrial fibrillation: A progressive atrial myopathy or a distinct disease? International Journal of Cardiology, 171(2), 126-133. doi:10.1016/j.ijcard.2013.12.009

Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295 [+]
Corradi, D. (2014). Atrial fibrillation from the pathologist’s perspective. Cardiovascular Pathology, 23(2), 71-84. doi:10.1016/j.carpath.2013.12.001

Kallergis, E. M., Goudis, C. A., & Vardas, P. E. (2014). Atrial fibrillation: A progressive atrial myopathy or a distinct disease? International Journal of Cardiology, 171(2), 126-133. doi:10.1016/j.ijcard.2013.12.009

Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295

Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003

Dilaveris, P., Antoniou, C.-K., Manolakou, P., Tsiamis, E., Gatzoulis, K., & Tousoulis, D. (2019). Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26(5), 780-802. doi:10.2174/0929867324666170918122502

Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114

Camelliti, P., Green, C. R., LeGrice, I., & Kohl, P. (2004). Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 94(6), 828-835. doi:10.1161/01.res.0000122382.19400.14

Miragoli, M., Salvarani, N., & Rohr, S. (2007). Myofibroblasts Induce Ectopic Activity in Cardiac Tissue. Circulation Research, 101(8), 755-758. doi:10.1161/circresaha.107.160549

Brown, T. R., Krogh-Madsen, T., & Christini, D. J. (2015). Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BioMed Research International, 2015, 1-12. doi:10.1155/2015/465714

Greisas, A., & Zlochiver, S. (2012). Modulation of Spiral-Wave Dynamics and Spontaneous Activity in a Fibroblast/Myocyte Heterocellular Tissue–-A Computational Study. IEEE Transactions on Biomedical Engineering, 59(5), 1398-1407. doi:10.1109/tbme.2012.2188291

Tveito, A., Lines, G., Artebrant, R., Skavhaug, O., & Maleckar, M. M. (2011). Existence of excitation waves for a collection of cardiomyocytes electrically coupled to fibroblasts. Mathematical Biosciences, 230(2), 79-86. doi:10.1016/j.mbs.2011.01.004

Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410

Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054

Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., … Zhang, H. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104(1-3), 22-48. doi:10.1016/j.pbiomolbio.2010.05.008

Trayanova, N. A., Boyle, P. M., Arevalo, H. J., & Zahid, S. (2014). Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00435

Chen, R., Wen, C., Fu, R., Li, J., & Wu, J. (2018). The effect of complex intramural microstructure caused by structural remodeling on the stability of atrial fibrillation: Insights from a three-dimensional multi-layer modeling study. PLOS ONE, 13(11), e0208029. doi:10.1371/journal.pone.0208029

Aronis, K. N., Ali, R., & Trayanova, N. A. (2019). The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. International Journal of Cardiology, 287, 139-147. doi:10.1016/j.ijcard.2019.01.096

Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., & Burrage, K. (2014). Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. Journal of The Royal Society Interface, 11(97), 20140352. doi:10.1098/rsif.2014.0352

Captur, G., Karperien, A. L., Li, C., Zemrak, F., Tobon-Gomez, C., Gao, X., … Moon, J. C. (2015). Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. Journal of Cardiovascular Magnetic Resonance, 17(1). doi:10.1186/s12968-015-0179-0

Captur, G., Karperien, A. L., Hughes, A. D., Francis, D. P., & Moon, J. C. (2016). The fractal heart — embracing mathematics in the cardiology clinic. Nature Reviews Cardiology, 14(1), 56-64. doi:10.1038/nrcardio.2016.161

Huo, Y., & Kassab, G. S. (2016). Scaling laws of coronary circulation in health and disease. Journal of Biomechanics, 49(12), 2531-2539. doi:10.1016/j.jbiomech.2016.01.044

Butera, S., & Di Paola, M. (2014). A physically based connection between fractional calculus and fractal geometry. Annals of Physics, 350, 146-158. doi:10.1016/j.aop.2014.07.008

Nigmatullin, R. R., Zhang, W., & Gubaidullin, I. (2017). Accurate relationships between fractals and fractional integrals: New approaches and evaluations. Fractional Calculus and Applied Analysis, 20(5), 1263-1280. doi:10.1515/fca-2017-0066

Tarasov, V. E. (2015). Electromagnetic waves in non-integer dimensional spaces and fractals. Chaos, Solitons & Fractals, 81, 38-42. doi:10.1016/j.chaos.2015.08.017

Yao, K., Liang, Y. S., & Zhang, F. (2009). On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function. Chaos, Solitons & Fractals, 41(5), 2538-2545. doi:10.1016/j.chaos.2008.09.053

Nigmatullin, R. R., & Mehaute, A. L. (2005). Is there geometrical/physical meaning of the fractional integral with complex exponent? Journal of Non-Crystalline Solids, 351(33-36), 2888-2899. doi:10.1016/j.jnoncrysol.2005.05.035

Nigmatullin, R., & Baleanu, D. (2013). New relationships connecting a class of fractal objects and fractional integrals in space. Fractional Calculus and Applied Analysis, 16(4), 911-936. doi:10.2478/s13540-013-0056-1

Sornette, D. (1998). Discrete-scale invariance and complex dimensions. Physics Reports, 297(5), 239-270. doi:10.1016/s0370-1573(97)00076-8

Karamitsos, T. D., Arvanitaki, A., Karvounis, H., Neubauer, S., & Ferreira, V. M. (2020). Myocardial Tissue Characterization and Fibrosis by Imaging. JACC: Cardiovascular Imaging, 13(5), 1221-1234. doi:10.1016/j.jcmg.2019.06.030

UGARTE, J. P., TOBÓN, C., LOPES, A. M., & MACHADO, J. A. T. (2020). A COMPLEX ORDER MODEL OF ATRIAL ELECTRICAL PROPAGATION FROM FRACTAL POROUS CELL MEMBRANE. Fractals, 28(06), 2050106. doi:10.1142/s0218348x20501066

Ortigueira, M., & Machado, J. (2017). Which Derivative? Fractal and Fractional, 1(1), 3. doi:10.3390/fractalfract1010003

Tveito, A., & Lines, G. T. (2008). A condition for setting off ectopic waves in computational models of excitable cells. Mathematical Biosciences, 213(2), 141-150. doi:10.1016/j.mbs.2008.04.001

Szekeres B.J., Izsák F.. Numerical solution of fractional order diffusion problems with Neumann boundary conditions2014;:1–27arXiv:1411.1596

Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). K+current changes account for the rate dependence of the action potential in the human atrial myocyte. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1398-H1410. doi:10.1152/ajpheart.00411.2009

Bueno-Orovio, A., Kay, D., & Burrage, K. (2014). Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numerical Mathematics, 54(4), 937-954. doi:10.1007/s10543-014-0484-2

RUDY, Y. (2005). Electrotonic Cell-Cell Interactions in Cardiac Tissue: Effects on Action Potential Propagation and Repolarization. Annals of the New York Academy of Sciences, 1047(1), 308-313. doi:10.1196/annals.1341.027

GRAUX, P., CARLIOZ, R., RIVAT, P., BERA, J., GUYOMAR, Y., & DUTOIT, A. (1998). Wavelength and Atrial Vulnerability: an Endocavitary Approach in Humans. Pacing and Clinical Electrophysiology, 21(1), 202-208. doi:10.1111/j.1540-8159.1998.tb01089.x

Hansson, A. (1998). Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. European Heart Journal, 19(2), 293-300. doi:10.1053/euhj.1997.0742

Zheng, Y., Xia, Y., Carlson, J., Kongstad, O., & Yuan, S. (2016). Atrial average conduction velocity in patients with and without paroxysmal atrial fibrillation. Clinical Physiology and Functional Imaging, 37(6), 596-601. doi:10.1111/cpf.12342

BELHASSEN, B., GLICK, A., & VISKIN, S. (2004). Reentry in a Pulmonary Vein as a Possible Mechanism of Focal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(7), 824-828. doi:10.1046/j.1540-8167.2004.03453.x

SHAH, D. C., HAISSAGUERRE, M., JAIS, P., & CLEMENTY, J. (2002). High-Resolution Mapping of Tachycardia Originating from the Superior Vena Cava: Evidence of Electrical Heterogeneity, Slow Conduction, and Possible Circus Movement Reentry. Journal of Cardiovascular Electrophysiology, 13(4), 388-392. doi:10.1046/j.1540-8167.2002.00388.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem