Mostrar el registro sencillo del ítem
dc.contributor.author | Ugarte, Juan P. | es_ES |
dc.contributor.author | Tobón, Catalina | es_ES |
dc.contributor.author | Saiz Rodríguez, Francisco Javier | es_ES |
dc.contributor.author | Mendes Lopes, Antonio | es_ES |
dc.contributor.author | Tenreiro Machado, José A. | es_ES |
dc.date.accessioned | 2021-06-12T03:34:04Z | |
dc.date.available | 2021-06-12T03:34:04Z | |
dc.date.issued | 2021-04 | es_ES |
dc.identifier.issn | 1007-5704 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167874 | |
dc.description.abstract | [EN] The computational modeling of the cardiac electrophysiology allows assertive and quantitative study of the atrial fibrosis under fibrillation conditions. The cardiac electrical propagation is described by the so-called monodomain model, that consists of a nonlinear parabolic reaction-diffusion equation. Fibroblast proliferation, which is an essential component of the fibrotic process, can be modeled by considering the membrane ionic kinetics as a reactive component. However, such a mathematical description does not account the structural feature of fibroblasts. In this work, the electrophysiological properties of fibroblast proliferation and coupling with cardiomyocytes are investigated, using mathematical and computational modelling. The study is focused on the conditions under which spontaneous activations occur in a fibrotic domain. The proposed fibrosis model takes account the electrical and structural interactions of fibroblasts within the myocardium. The electrical component is described through an ionic kinetics formalism, while the structural component is obtained by means of a triplet of complex order derivatives that constructs the diffusion operator. A theoretical analysis determines the model parameters that generate unstable solutions, and numerical simulations illustrate and validate the analytical outcomes. The results evince a strong modulation of the stability conditions of the fibrotic model by the real and imaginary part of the fractional derivative order. The fibrosis structural complexity, controlled by the fractional order, determines the extent of the parameter space that generates spontaneous activation. Moreover, not all the unstable parameter configurations generate electrical propagation. In the cases of electrical conduction after spontaneous activation, the conduction velocity in the fibrotic domain is significantly slower than the one observed in healthy atrial tissue. The results give a new perspective for the development of atrial fibrosis models including the ectopic activity as an initiation factor for fibrillation activity. Indeed, the proposed design exploits the complex order fractional derivatives, to generate a wide set of electrophysiological scenarios. | es_ES |
dc.description.sponsorship | This work was partially supported by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEO/2020/043). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Communications in Nonlinear Science and Numerical Simulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial fibrosis | es_ES |
dc.subject | Spontaneous activation | es_ES |
dc.subject | Complex order derivatives | es_ES |
dc.subject | Stability analysis | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Spontaneous activation under atrial fibrosis: A model using complex order derivatives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cnsns.2020.105618 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043/ES/MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Ugarte, JP.; Tobón, C.; Saiz Rodríguez, FJ.; Mendes Lopes, A.; Tenreiro Machado, JA. (2021). Spontaneous activation under atrial fibrosis: A model using complex order derivatives. Communications in Nonlinear Science and Numerical Simulation. 95:1-12. https://doi.org/10.1016/j.cnsns.2020.105618 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cnsns.2020.105618 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 95 | es_ES |
dc.relation.pasarela | S\433341 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Corradi, D. (2014). Atrial fibrillation from the pathologist’s perspective. Cardiovascular Pathology, 23(2), 71-84. doi:10.1016/j.carpath.2013.12.001 | es_ES |
dc.description.references | Kallergis, E. M., Goudis, C. A., & Vardas, P. E. (2014). Atrial fibrillation: A progressive atrial myopathy or a distinct disease? International Journal of Cardiology, 171(2), 126-133. doi:10.1016/j.ijcard.2013.12.009 | es_ES |
dc.description.references | Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295 | es_ES |
dc.description.references | Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 | es_ES |
dc.description.references | Dilaveris, P., Antoniou, C.-K., Manolakou, P., Tsiamis, E., Gatzoulis, K., & Tousoulis, D. (2019). Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26(5), 780-802. doi:10.2174/0929867324666170918122502 | es_ES |
dc.description.references | Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114 | es_ES |
dc.description.references | Camelliti, P., Green, C. R., LeGrice, I., & Kohl, P. (2004). Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 94(6), 828-835. doi:10.1161/01.res.0000122382.19400.14 | es_ES |
dc.description.references | Miragoli, M., Salvarani, N., & Rohr, S. (2007). Myofibroblasts Induce Ectopic Activity in Cardiac Tissue. Circulation Research, 101(8), 755-758. doi:10.1161/circresaha.107.160549 | es_ES |
dc.description.references | Brown, T. R., Krogh-Madsen, T., & Christini, D. J. (2015). Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BioMed Research International, 2015, 1-12. doi:10.1155/2015/465714 | es_ES |
dc.description.references | Greisas, A., & Zlochiver, S. (2012). Modulation of Spiral-Wave Dynamics and Spontaneous Activity in a Fibroblast/Myocyte Heterocellular Tissue–-A Computational Study. IEEE Transactions on Biomedical Engineering, 59(5), 1398-1407. doi:10.1109/tbme.2012.2188291 | es_ES |
dc.description.references | Tveito, A., Lines, G., Artebrant, R., Skavhaug, O., & Maleckar, M. M. (2011). Existence of excitation waves for a collection of cardiomyocytes electrically coupled to fibroblasts. Mathematical Biosciences, 230(2), 79-86. doi:10.1016/j.mbs.2011.01.004 | es_ES |
dc.description.references | Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410 | es_ES |
dc.description.references | Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054 | es_ES |
dc.description.references | Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., … Zhang, H. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104(1-3), 22-48. doi:10.1016/j.pbiomolbio.2010.05.008 | es_ES |
dc.description.references | Trayanova, N. A., Boyle, P. M., Arevalo, H. J., & Zahid, S. (2014). Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00435 | es_ES |
dc.description.references | Chen, R., Wen, C., Fu, R., Li, J., & Wu, J. (2018). The effect of complex intramural microstructure caused by structural remodeling on the stability of atrial fibrillation: Insights from a three-dimensional multi-layer modeling study. PLOS ONE, 13(11), e0208029. doi:10.1371/journal.pone.0208029 | es_ES |
dc.description.references | Aronis, K. N., Ali, R., & Trayanova, N. A. (2019). The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. International Journal of Cardiology, 287, 139-147. doi:10.1016/j.ijcard.2019.01.096 | es_ES |
dc.description.references | Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., & Burrage, K. (2014). Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. Journal of The Royal Society Interface, 11(97), 20140352. doi:10.1098/rsif.2014.0352 | es_ES |
dc.description.references | Captur, G., Karperien, A. L., Li, C., Zemrak, F., Tobon-Gomez, C., Gao, X., … Moon, J. C. (2015). Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. Journal of Cardiovascular Magnetic Resonance, 17(1). doi:10.1186/s12968-015-0179-0 | es_ES |
dc.description.references | Captur, G., Karperien, A. L., Hughes, A. D., Francis, D. P., & Moon, J. C. (2016). The fractal heart — embracing mathematics in the cardiology clinic. Nature Reviews Cardiology, 14(1), 56-64. doi:10.1038/nrcardio.2016.161 | es_ES |
dc.description.references | Huo, Y., & Kassab, G. S. (2016). Scaling laws of coronary circulation in health and disease. Journal of Biomechanics, 49(12), 2531-2539. doi:10.1016/j.jbiomech.2016.01.044 | es_ES |
dc.description.references | Butera, S., & Di Paola, M. (2014). A physically based connection between fractional calculus and fractal geometry. Annals of Physics, 350, 146-158. doi:10.1016/j.aop.2014.07.008 | es_ES |
dc.description.references | Nigmatullin, R. R., Zhang, W., & Gubaidullin, I. (2017). Accurate relationships between fractals and fractional integrals: New approaches and evaluations. Fractional Calculus and Applied Analysis, 20(5), 1263-1280. doi:10.1515/fca-2017-0066 | es_ES |
dc.description.references | Tarasov, V. E. (2015). Electromagnetic waves in non-integer dimensional spaces and fractals. Chaos, Solitons & Fractals, 81, 38-42. doi:10.1016/j.chaos.2015.08.017 | es_ES |
dc.description.references | Yao, K., Liang, Y. S., & Zhang, F. (2009). On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function. Chaos, Solitons & Fractals, 41(5), 2538-2545. doi:10.1016/j.chaos.2008.09.053 | es_ES |
dc.description.references | Nigmatullin, R. R., & Mehaute, A. L. (2005). Is there geometrical/physical meaning of the fractional integral with complex exponent? Journal of Non-Crystalline Solids, 351(33-36), 2888-2899. doi:10.1016/j.jnoncrysol.2005.05.035 | es_ES |
dc.description.references | Nigmatullin, R., & Baleanu, D. (2013). New relationships connecting a class of fractal objects and fractional integrals in space. Fractional Calculus and Applied Analysis, 16(4), 911-936. doi:10.2478/s13540-013-0056-1 | es_ES |
dc.description.references | Sornette, D. (1998). Discrete-scale invariance and complex dimensions. Physics Reports, 297(5), 239-270. doi:10.1016/s0370-1573(97)00076-8 | es_ES |
dc.description.references | Karamitsos, T. D., Arvanitaki, A., Karvounis, H., Neubauer, S., & Ferreira, V. M. (2020). Myocardial Tissue Characterization and Fibrosis by Imaging. JACC: Cardiovascular Imaging, 13(5), 1221-1234. doi:10.1016/j.jcmg.2019.06.030 | es_ES |
dc.description.references | UGARTE, J. P., TOBÓN, C., LOPES, A. M., & MACHADO, J. A. T. (2020). A COMPLEX ORDER MODEL OF ATRIAL ELECTRICAL PROPAGATION FROM FRACTAL POROUS CELL MEMBRANE. Fractals, 28(06), 2050106. doi:10.1142/s0218348x20501066 | es_ES |
dc.description.references | Ortigueira, M., & Machado, J. (2017). Which Derivative? Fractal and Fractional, 1(1), 3. doi:10.3390/fractalfract1010003 | es_ES |
dc.description.references | Tveito, A., & Lines, G. T. (2008). A condition for setting off ectopic waves in computational models of excitable cells. Mathematical Biosciences, 213(2), 141-150. doi:10.1016/j.mbs.2008.04.001 | es_ES |
dc.description.references | Szekeres B.J., Izsák F.. Numerical solution of fractional order diffusion problems with Neumann boundary conditions2014;:1–27arXiv:1411.1596 | es_ES |
dc.description.references | Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). K+current changes account for the rate dependence of the action potential in the human atrial myocyte. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1398-H1410. doi:10.1152/ajpheart.00411.2009 | es_ES |
dc.description.references | Bueno-Orovio, A., Kay, D., & Burrage, K. (2014). Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numerical Mathematics, 54(4), 937-954. doi:10.1007/s10543-014-0484-2 | es_ES |
dc.description.references | RUDY, Y. (2005). Electrotonic Cell-Cell Interactions in Cardiac Tissue: Effects on Action Potential Propagation and Repolarization. Annals of the New York Academy of Sciences, 1047(1), 308-313. doi:10.1196/annals.1341.027 | es_ES |
dc.description.references | GRAUX, P., CARLIOZ, R., RIVAT, P., BERA, J., GUYOMAR, Y., & DUTOIT, A. (1998). Wavelength and Atrial Vulnerability: an Endocavitary Approach in Humans. Pacing and Clinical Electrophysiology, 21(1), 202-208. doi:10.1111/j.1540-8159.1998.tb01089.x | es_ES |
dc.description.references | Hansson, A. (1998). Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. European Heart Journal, 19(2), 293-300. doi:10.1053/euhj.1997.0742 | es_ES |
dc.description.references | Zheng, Y., Xia, Y., Carlson, J., Kongstad, O., & Yuan, S. (2016). Atrial average conduction velocity in patients with and without paroxysmal atrial fibrillation. Clinical Physiology and Functional Imaging, 37(6), 596-601. doi:10.1111/cpf.12342 | es_ES |
dc.description.references | BELHASSEN, B., GLICK, A., & VISKIN, S. (2004). Reentry in a Pulmonary Vein as a Possible Mechanism of Focal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(7), 824-828. doi:10.1046/j.1540-8167.2004.03453.x | es_ES |
dc.description.references | SHAH, D. C., HAISSAGUERRE, M., JAIS, P., & CLEMENTY, J. (2002). High-Resolution Mapping of Tachycardia Originating from the Superior Vena Cava: Evidence of Electrical Heterogeneity, Slow Conduction, and Possible Circus Movement Reentry. Journal of Cardiovascular Electrophysiology, 13(4), 388-392. doi:10.1046/j.1540-8167.2002.00388.x | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |