- -

Spontaneous activation under atrial fibrosis: A model using complex order derivatives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spontaneous activation under atrial fibrosis: A model using complex order derivatives

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ugarte, Juan P. es_ES
dc.contributor.author Tobón, Catalina es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Mendes Lopes, Antonio es_ES
dc.contributor.author Tenreiro Machado, José A. es_ES
dc.date.accessioned 2021-06-12T03:34:04Z
dc.date.available 2021-06-12T03:34:04Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 1007-5704 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167874
dc.description.abstract [EN] The computational modeling of the cardiac electrophysiology allows assertive and quantitative study of the atrial fibrosis under fibrillation conditions. The cardiac electrical propagation is described by the so-called monodomain model, that consists of a nonlinear parabolic reaction-diffusion equation. Fibroblast proliferation, which is an essential component of the fibrotic process, can be modeled by considering the membrane ionic kinetics as a reactive component. However, such a mathematical description does not account the structural feature of fibroblasts. In this work, the electrophysiological properties of fibroblast proliferation and coupling with cardiomyocytes are investigated, using mathematical and computational modelling. The study is focused on the conditions under which spontaneous activations occur in a fibrotic domain. The proposed fibrosis model takes account the electrical and structural interactions of fibroblasts within the myocardium. The electrical component is described through an ionic kinetics formalism, while the structural component is obtained by means of a triplet of complex order derivatives that constructs the diffusion operator. A theoretical analysis determines the model parameters that generate unstable solutions, and numerical simulations illustrate and validate the analytical outcomes. The results evince a strong modulation of the stability conditions of the fibrotic model by the real and imaginary part of the fractional derivative order. The fibrosis structural complexity, controlled by the fractional order, determines the extent of the parameter space that generates spontaneous activation. Moreover, not all the unstable parameter configurations generate electrical propagation. In the cases of electrical conduction after spontaneous activation, the conduction velocity in the fibrotic domain is significantly slower than the one observed in healthy atrial tissue. The results give a new perspective for the development of atrial fibrosis models including the ectopic activity as an initiation factor for fibrillation activity. Indeed, the proposed design exploits the complex order fractional derivatives, to generate a wide set of electrophysiological scenarios. es_ES
dc.description.sponsorship This work was partially supported by the Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEO/2020/043). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Communications in Nonlinear Science and Numerical Simulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrosis es_ES
dc.subject Spontaneous activation es_ES
dc.subject Complex order derivatives es_ES
dc.subject Stability analysis es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Spontaneous activation under atrial fibrosis: A model using complex order derivatives es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cnsns.2020.105618 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043/ES/MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ugarte, JP.; Tobón, C.; Saiz Rodríguez, FJ.; Mendes Lopes, A.; Tenreiro Machado, JA. (2021). Spontaneous activation under atrial fibrosis: A model using complex order derivatives. Communications in Nonlinear Science and Numerical Simulation. 95:1-12. https://doi.org/10.1016/j.cnsns.2020.105618 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cnsns.2020.105618 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 95 es_ES
dc.relation.pasarela S\433341 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Corradi, D. (2014). Atrial fibrillation from the pathologist’s perspective. Cardiovascular Pathology, 23(2), 71-84. doi:10.1016/j.carpath.2013.12.001 es_ES
dc.description.references Kallergis, E. M., Goudis, C. A., & Vardas, P. E. (2014). Atrial fibrillation: A progressive atrial myopathy or a distinct disease? International Journal of Cardiology, 171(2), 126-133. doi:10.1016/j.ijcard.2013.12.009 es_ES
dc.description.references Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., … Zeppenfeld, K. (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace, 18(11), 1609-1678. doi:10.1093/europace/euw295 es_ES
dc.description.references Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 es_ES
dc.description.references Dilaveris, P., Antoniou, C.-K., Manolakou, P., Tsiamis, E., Gatzoulis, K., & Tousoulis, D. (2019). Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26(5), 780-802. doi:10.2174/0929867324666170918122502 es_ES
dc.description.references Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114 es_ES
dc.description.references Camelliti, P., Green, C. R., LeGrice, I., & Kohl, P. (2004). Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 94(6), 828-835. doi:10.1161/01.res.0000122382.19400.14 es_ES
dc.description.references Miragoli, M., Salvarani, N., & Rohr, S. (2007). Myofibroblasts Induce Ectopic Activity in Cardiac Tissue. Circulation Research, 101(8), 755-758. doi:10.1161/circresaha.107.160549 es_ES
dc.description.references Brown, T. R., Krogh-Madsen, T., & Christini, D. J. (2015). Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis. BioMed Research International, 2015, 1-12. doi:10.1155/2015/465714 es_ES
dc.description.references Greisas, A., & Zlochiver, S. (2012). Modulation of Spiral-Wave Dynamics and Spontaneous Activity in a Fibroblast/Myocyte Heterocellular Tissue–-A Computational Study. IEEE Transactions on Biomedical Engineering, 59(5), 1398-1407. doi:10.1109/tbme.2012.2188291 es_ES
dc.description.references Tveito, A., Lines, G., Artebrant, R., Skavhaug, O., & Maleckar, M. M. (2011). Existence of excitation waves for a collection of cardiomyocytes electrically coupled to fibroblasts. Mathematical Biosciences, 230(2), 79-86. doi:10.1016/j.mbs.2011.01.004 es_ES
dc.description.references Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410 es_ES
dc.description.references Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054 es_ES
dc.description.references Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., … Zhang, H. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104(1-3), 22-48. doi:10.1016/j.pbiomolbio.2010.05.008 es_ES
dc.description.references Trayanova, N. A., Boyle, P. M., Arevalo, H. J., & Zahid, S. (2014). Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00435 es_ES
dc.description.references Chen, R., Wen, C., Fu, R., Li, J., & Wu, J. (2018). The effect of complex intramural microstructure caused by structural remodeling on the stability of atrial fibrillation: Insights from a three-dimensional multi-layer modeling study. PLOS ONE, 13(11), e0208029. doi:10.1371/journal.pone.0208029 es_ES
dc.description.references Aronis, K. N., Ali, R., & Trayanova, N. A. (2019). The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. International Journal of Cardiology, 287, 139-147. doi:10.1016/j.ijcard.2019.01.096 es_ES
dc.description.references Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., & Burrage, K. (2014). Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. Journal of The Royal Society Interface, 11(97), 20140352. doi:10.1098/rsif.2014.0352 es_ES
dc.description.references Captur, G., Karperien, A. L., Li, C., Zemrak, F., Tobon-Gomez, C., Gao, X., … Moon, J. C. (2015). Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. Journal of Cardiovascular Magnetic Resonance, 17(1). doi:10.1186/s12968-015-0179-0 es_ES
dc.description.references Captur, G., Karperien, A. L., Hughes, A. D., Francis, D. P., & Moon, J. C. (2016). The fractal heart — embracing mathematics in the cardiology clinic. Nature Reviews Cardiology, 14(1), 56-64. doi:10.1038/nrcardio.2016.161 es_ES
dc.description.references Huo, Y., & Kassab, G. S. (2016). Scaling laws of coronary circulation in health and disease. Journal of Biomechanics, 49(12), 2531-2539. doi:10.1016/j.jbiomech.2016.01.044 es_ES
dc.description.references Butera, S., & Di Paola, M. (2014). A physically based connection between fractional calculus and fractal geometry. Annals of Physics, 350, 146-158. doi:10.1016/j.aop.2014.07.008 es_ES
dc.description.references Nigmatullin, R. R., Zhang, W., & Gubaidullin, I. (2017). Accurate relationships between fractals and fractional integrals: New approaches and evaluations. Fractional Calculus and Applied Analysis, 20(5), 1263-1280. doi:10.1515/fca-2017-0066 es_ES
dc.description.references Tarasov, V. E. (2015). Electromagnetic waves in non-integer dimensional spaces and fractals. Chaos, Solitons & Fractals, 81, 38-42. doi:10.1016/j.chaos.2015.08.017 es_ES
dc.description.references Yao, K., Liang, Y. S., & Zhang, F. (2009). On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function. Chaos, Solitons & Fractals, 41(5), 2538-2545. doi:10.1016/j.chaos.2008.09.053 es_ES
dc.description.references Nigmatullin, R. R., & Mehaute, A. L. (2005). Is there geometrical/physical meaning of the fractional integral with complex exponent? Journal of Non-Crystalline Solids, 351(33-36), 2888-2899. doi:10.1016/j.jnoncrysol.2005.05.035 es_ES
dc.description.references Nigmatullin, R., & Baleanu, D. (2013). New relationships connecting a class of fractal objects and fractional integrals in space. Fractional Calculus and Applied Analysis, 16(4), 911-936. doi:10.2478/s13540-013-0056-1 es_ES
dc.description.references Sornette, D. (1998). Discrete-scale invariance and complex dimensions. Physics Reports, 297(5), 239-270. doi:10.1016/s0370-1573(97)00076-8 es_ES
dc.description.references Karamitsos, T. D., Arvanitaki, A., Karvounis, H., Neubauer, S., & Ferreira, V. M. (2020). Myocardial Tissue Characterization and Fibrosis by Imaging. JACC: Cardiovascular Imaging, 13(5), 1221-1234. doi:10.1016/j.jcmg.2019.06.030 es_ES
dc.description.references UGARTE, J. P., TOBÓN, C., LOPES, A. M., & MACHADO, J. A. T. (2020). A COMPLEX ORDER MODEL OF ATRIAL ELECTRICAL PROPAGATION FROM FRACTAL POROUS CELL MEMBRANE. Fractals, 28(06), 2050106. doi:10.1142/s0218348x20501066 es_ES
dc.description.references Ortigueira, M., & Machado, J. (2017). Which Derivative? Fractal and Fractional, 1(1), 3. doi:10.3390/fractalfract1010003 es_ES
dc.description.references Tveito, A., & Lines, G. T. (2008). A condition for setting off ectopic waves in computational models of excitable cells. Mathematical Biosciences, 213(2), 141-150. doi:10.1016/j.mbs.2008.04.001 es_ES
dc.description.references Szekeres B.J., Izsák F.. Numerical solution of fractional order diffusion problems with Neumann boundary conditions2014;:1–27arXiv:1411.1596 es_ES
dc.description.references Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). K+current changes account for the rate dependence of the action potential in the human atrial myocyte. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1398-H1410. doi:10.1152/ajpheart.00411.2009 es_ES
dc.description.references Bueno-Orovio, A., Kay, D., & Burrage, K. (2014). Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numerical Mathematics, 54(4), 937-954. doi:10.1007/s10543-014-0484-2 es_ES
dc.description.references RUDY, Y. (2005). Electrotonic Cell-Cell Interactions in Cardiac Tissue: Effects on Action Potential Propagation and Repolarization. Annals of the New York Academy of Sciences, 1047(1), 308-313. doi:10.1196/annals.1341.027 es_ES
dc.description.references GRAUX, P., CARLIOZ, R., RIVAT, P., BERA, J., GUYOMAR, Y., & DUTOIT, A. (1998). Wavelength and Atrial Vulnerability: an Endocavitary Approach in Humans. Pacing and Clinical Electrophysiology, 21(1), 202-208. doi:10.1111/j.1540-8159.1998.tb01089.x es_ES
dc.description.references Hansson, A. (1998). Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. European Heart Journal, 19(2), 293-300. doi:10.1053/euhj.1997.0742 es_ES
dc.description.references Zheng, Y., Xia, Y., Carlson, J., Kongstad, O., & Yuan, S. (2016). Atrial average conduction velocity in patients with and without paroxysmal atrial fibrillation. Clinical Physiology and Functional Imaging, 37(6), 596-601. doi:10.1111/cpf.12342 es_ES
dc.description.references BELHASSEN, B., GLICK, A., & VISKIN, S. (2004). Reentry in a Pulmonary Vein as a Possible Mechanism of Focal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 15(7), 824-828. doi:10.1046/j.1540-8167.2004.03453.x es_ES
dc.description.references SHAH, D. C., HAISSAGUERRE, M., JAIS, P., & CLEMENTY, J. (2002). High-Resolution Mapping of Tachycardia Originating from the Superior Vena Cava: Evidence of Electrical Heterogeneity, Slow Conduction, and Possible Circus Movement Reentry. Journal of Cardiovascular Electrophysiology, 13(4), 388-392. doi:10.1046/j.1540-8167.2002.00388.x es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem