- -

Numerical Optimization of an Ejector for Waste Heat Recovery Used to Cool Down the Intake Air in an Internal Combustion Engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical Optimization of an Ejector for Waste Heat Recovery Used to Cool Down the Intake Air in an Internal Combustion Engine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galindo, José es_ES
dc.contributor.author Gil, A. es_ES
dc.contributor.author Dolz, Vicente es_ES
dc.contributor.author Ponce-Mora, Alberto es_ES
dc.date.accessioned 2021-06-15T03:31:15Z
dc.date.available 2021-06-15T03:31:15Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 1948-5085 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167975
dc.description.abstract [EN] In the present paper, a numerical investigation of a jet-ejector is carried out using a real gas model of R1234yf. The prototype under investigation works with specific operating conditions of a jet-ejector refrigeration system intended for waste heat recovery in an internal combustion engine (ICE). In the first instance, the geometry optimization involving nozzle exit diameter, mixing chamber diameter, and nozzle exit position (NXP) is performed. Once the optimum geometry has been obtained, the jet-ejector prototype is tested with different operating pressure ratios to determine its off-design performance. The flow structure in relevant cases has been examined with an emphasis on critical and subcritical modes. The flow phenomena occurring during expansion, entrainment, and mixing processes are discussed so performance degradation can be directly related to physical processes. The analysis has been completed fitting simulated points to critical and subcritical planar surfaces. The results in terms of goodness of fit are satisfactory so the jet-ejector performance in off-design operating conditions can be reflected through simple mathematic models. When the overall cycle is assessed by using previous computational fluid dynamics (CFD) maps, it is observed that the achievable cooling drops significantly when an ambient temperature of 31 degrees C is exceeded. es_ES
dc.description.sponsorship The authors want to acknowledge the institution "Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana" and its grant program "Subvenciones para la contratacion de personal investigador de caracter predoctoral" for doctoral studies (ACIF/2018/124). es_ES
dc.language Inglés es_ES
dc.publisher American Society of Mechanical Engineers es_ES
dc.relation.ispartof Journal of Thermal Science and Engineering Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Waste heat recovery es_ES
dc.subject Jet-Ejector cycle es_ES
dc.subject Adiabatic engine es_ES
dc.subject Jet-Ejector optimization es_ES
dc.subject Engine efficiency es_ES
dc.subject R1234yf es_ES
dc.subject Condensation es_ES
dc.subject Energy efficiency es_ES
dc.subject Energy systems es_ES
dc.subject Evaporation es_ES
dc.subject Heat recovery es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Numerical Optimization of an Ejector for Waste Heat Recovery Used to Cool Down the Intake Air in an Internal Combustion Engine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1115/1.4046906 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F124/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Galindo, J.; Gil, A.; Dolz, V.; Ponce-Mora, A. (2020). Numerical Optimization of an Ejector for Waste Heat Recovery Used to Cool Down the Intake Air in an Internal Combustion Engine. Journal of Thermal Science and Engineering Applications. 12(5):1-13. https://doi.org/10.1115/1.4046906 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1115/1.4046906 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\416573 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Varga, S., Oliveira, A. C., & Diaconu, B. (2009). Influence of geometrical factors on steam ejector performance – A numerical assessment. International Journal of Refrigeration, 32(7), 1694-1701. doi:10.1016/j.ijrefrig.2009.05.009 es_ES
dc.description.references Yan, J., Cai, W., & Li, Y. (2012). Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant. Renewable Energy, 46, 155-163. doi:10.1016/j.renene.2012.03.031 es_ES
dc.description.references He, S., Li, Y., & Wang, R. Z. (2009). Progress of mathematical modeling on ejectors. Renewable and Sustainable Energy Reviews, 13(8), 1760-1780. doi:10.1016/j.rser.2008.09.032 es_ES
dc.description.references Zhu, Y., Cai, W., Wen, C., & Li, Y. (2009). Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 29(5-6), 898-905. doi:10.1016/j.applthermaleng.2008.04.025 es_ES
dc.description.references Jia, Y., & Wenjian, C. (2012). Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant. Energy Conversion and Management, 53(1), 240-246. doi:10.1016/j.enconman.2011.09.002 es_ES
dc.description.references Wang, L., Yan, J., Wang, C., & Li, X. (2017). Numerical study on optimization of ejector primary nozzle geometries. International Journal of Refrigeration, 76, 219-229. doi:10.1016/j.ijrefrig.2017.02.010 es_ES
dc.description.references Ruangtrakoon, N., Thongtip, T., Aphornratana, S., & Sriveerakul, T. (2013). CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle. International Journal of Thermal Sciences, 63, 133-145. doi:10.1016/j.ijthermalsci.2012.07.009 es_ES
dc.description.references Dong, J., Kang, C. L., Wang, H. M., & Ma, H. B. (2016). Experimental Investigation of Steam Ejector System With an Extra Low Generating Temperature. Journal of Thermal Science and Engineering Applications, 8(2). doi:10.1115/1.4032483 es_ES
dc.description.references Soroureddin, A., Mehr, A. S., Mahmoudi, S., & Yari, M. (2013). An experimental and theoretical study of a jet-pump refrigeration system designed using a new two-dimensional model for the entrainment region of the ejector. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(4), 486-497. doi:10.1177/0957650913477092 es_ES
dc.description.references Zhu, Y., & Jiang, P. (2014). Experimental and analytical studies on the shock wave length in convergent and convergent–divergent nozzle ejectors. Energy Conversion and Management, 88, 907-914. doi:10.1016/j.enconman.2014.09.023 es_ES
dc.description.references Zhu, Y., & Jiang, P. (2014). Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance. International Journal of Refrigeration, 40, 31-42. doi:10.1016/j.ijrefrig.2013.11.008 es_ES
dc.description.references Sargolzaei, J., Pirzadi Jahromi, M. R., & Saljoughi, E. (2010). Triple-Choking Model for Ejector. Journal of Thermal Science and Engineering Applications, 2(2). doi:10.1115/1.4002752 es_ES
dc.description.references Armstead, J. R., & Miers, S. A. (2013). Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines. Journal of Thermal Science and Engineering Applications, 6(1). doi:10.1115/1.4024882 es_ES
dc.description.references Luján, J. M., Climent, H., Dolz, V., Moratal, A., Borges-Alejo, J., & Soukeur, Z. (2016). Potential of exhaust heat recovery for intake charge heating in a diesel engine transient operation at cold conditions. Applied Thermal Engineering, 105, 501-508. doi:10.1016/j.applthermaleng.2016.03.028 es_ES
dc.description.references Aghaali, H., & Ångström, H.-E. (2015). A review of turbocompounding as a waste heat recovery system for internal combustion engines. Renewable and Sustainable Energy Reviews, 49, 813-824. doi:10.1016/j.rser.2015.04.144 es_ES
dc.description.references Hsiao, Y. Y., Chang, W. C., & Chen, S. L. (2010). A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 35(3), 1447-1454. doi:10.1016/j.energy.2009.11.030 es_ES
dc.description.references In, B. D., & Lee, K. H. (2015). A study of a thermoelectric generator applied to a diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(1), 133-143. doi:10.1177/0954407015576440 es_ES
dc.description.references Dolz, V., Novella, R., García, A., & Sánchez, J. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering, 36, 269-278. doi:10.1016/j.applthermaleng.2011.10.025 es_ES
dc.description.references Aly, S. E. (1988). Diesel engine waste-heat power cycle. Applied Energy, 29(3), 179-189. doi:10.1016/0306-2619(88)90027-x es_ES
dc.description.references Galindo, J., Ruiz, S., Dolz, V., Royo-Pascual, L., Haller, R., Nicolas, B., & Glavatskaya, Y. (2015). Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander. Energy Conversion and Management, 103, 519-532. doi:10.1016/j.enconman.2015.06.085 es_ES
dc.description.references Glover, S., Douglas, R., Glover, L., & McCullough, G. (2014). Preliminary analysis of organic Rankine cycles to improve vehicle efficiency. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228(10), 1142-1153. doi:10.1177/0954407014528904 es_ES
dc.description.references Zegenhagen, M. T., & Ziegler, F. (2015). Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines. Applied Energy, 160, 221-230. doi:10.1016/j.apenergy.2015.09.057 es_ES
dc.description.references Novella, R., Dolz, V., Martín, J., & Royo-Pascual, L. (2017). Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine. Applied Thermal Engineering, 111, 257-270. doi:10.1016/j.applthermaleng.2016.09.084 es_ES
dc.description.references Galindo, J., Dolz, V., Tiseira, A., & Ponce-Mora, A. (2019). Thermodynamic analysis and optimization of a jet ejector refrigeration cycle used to cool down the intake air in an IC engine. International Journal of Refrigeration, 103, 253-263. doi:10.1016/j.ijrefrig.2019.04.019 es_ES
dc.description.references Galindo, J., Serrano, J., Dolz, V., & Kleut, P. (2015). Brayton cycle for internal combustion engine exhaust gas waste heat recovery. Advances in Mechanical Engineering, 7(6), 168781401559031. doi:10.1177/1687814015590314 es_ES
dc.description.references Zegenhagen, M. T., & Ziegler, F. (2015). Experimental investigation of the characteristics of a jet-ejector and a jet-ejector cooling system operating with R134a as a refrigerant. International Journal of Refrigeration, 56, 173-185. doi:10.1016/j.ijrefrig.2015.01.001 es_ES
dc.description.references Chen, X., Worall, M., Omer, S., Su, Y., & Riffat, S. (2013). Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle. Applied Energy, 102, 931-942. doi:10.1016/j.apenergy.2012.09.032 es_ES
dc.description.references Sriveerakul, T., Aphornratana, S., & Chunnanond, K. (2007). Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries. International Journal of Thermal Sciences, 46(8), 823-833. doi:10.1016/j.ijthermalsci.2006.10.012 es_ES
dc.description.references Bartosiewicz, Y., Aidoun, Z., Desevaux, P., & Mercadier, Y. (2005). Numerical and experimental investigations on supersonic ejectors. International Journal of Heat and Fluid Flow, 26(1), 56-70. doi:10.1016/j.ijheatfluidflow.2004.07.003 es_ES
dc.description.references Mazzelli, F., Little, A. B., Garimella, S., & Bartosiewicz, Y. (2015). Computational and experimental analysis of supersonic air ejector: Turbulence modeling and assessment of 3D effects. International Journal of Heat and Fluid Flow, 56, 305-316. doi:10.1016/j.ijheatfluidflow.2015.08.003 es_ES
dc.description.references Mazzelli, F., & Milazzo, A. (2015). Performance analysis of a supersonic ejector cycle working with R245fa. International Journal of Refrigeration, 49, 79-92. doi:10.1016/j.ijrefrig.2014.09.020 es_ES
dc.description.references Croquer, S., Poncet, S., & Aidoun, Z. (2016). Turbulence modeling of a single-phase R134a supersonic ejector. Part 1: Numerical benchmark. International Journal of Refrigeration, 61, 140-152. doi:10.1016/j.ijrefrig.2015.07.030 es_ES
dc.description.references Lee, Y., & Jung, D. (2012). A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Applied Thermal Engineering, 35, 240-242. doi:10.1016/j.applthermaleng.2011.09.004 es_ES
dc.description.references Vaghela, J. K. (2017). Comparative Evaluation of an Automobile Air - Conditioning System Using R134a and Its Alternative Refrigerants. Energy Procedia, 109, 153-160. doi:10.1016/j.egypro.2017.03.083 es_ES
dc.description.references Wang, L., Liu, J., Zou, T., Du, J., & Jia, F. (2018). Auto-tuning ejector for refrigeration system. Energy, 161, 536-543. doi:10.1016/j.energy.2018.07.110 es_ES
dc.description.references Chen, S., Chen, G., & Fang, L. (2015). An experimental study and 1-D analysis of an ejector with a movable primary nozzle that operates with R236fa. International Journal of Refrigeration, 60, 19-25. doi:10.1016/j.ijrefrig.2015.08.011 es_ES
dc.description.references Zegenhagen, M. T., & Ziegler, F. (2015). A one-dimensional model of a jet-ejector in critical double choking operation with R134a as a refrigerant including real gas effects. International Journal of Refrigeration, 55, 72-84. doi:10.1016/j.ijrefrig.2015.03.013 es_ES
dc.description.references Besagni, G., Mereu, R., Chiesa, P., & Inzoli, F. (2015). An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation. Energy Conversion and Management, 105, 697-715. doi:10.1016/j.enconman.2015.08.029 es_ES
dc.description.references Gagan, J., Smierciew, K., Butrymowicz, D., & Karwacki, J. (2014). Comparative study of turbulence models in application to gas ejectors. International Journal of Thermal Sciences, 78, 9-15. doi:10.1016/j.ijthermalsci.2013.11.009 es_ES
dc.description.references Hakkaki-Fard, A., Aidoun, Z., & Ouzzane, M. (2015). A computational methodology for ejector design and performance maximisation. Energy Conversion and Management, 105, 1291-1302. doi:10.1016/j.enconman.2015.08.070 es_ES
dc.description.references Besagni, G., & Inzoli, F. (2017). Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches. Applied Thermal Engineering, 117, 122-144. doi:10.1016/j.applthermaleng.2017.02.011 es_ES
dc.description.references Pianthong, K., Seehanam, W., Behnia, M., Sriveerakul, T., & Aphornratana, S. (2007). Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Conversion and Management, 48(9), 2556-2564. doi:10.1016/j.enconman.2007.03.021 es_ES
dc.description.references Richter, M., McLinden, M. O., & Lemmon, E. W. (2011). Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p–ρ–T Measurements and an Equation of State. Journal of Chemical & Engineering Data, 56(7), 3254-3264. doi:10.1021/je200369m es_ES
dc.description.references García del Valle, J., Saíz Jabardo, J. M., Castro Ruiz, F., & San José Alonso, J. F. (2014). An experimental investigation of a R-134a ejector refrigeration system. International Journal of Refrigeration, 46, 105-113. doi:10.1016/j.ijrefrig.2014.05.028 es_ES
dc.description.references Poles, S., Geremia, P., Campos, F., Weston, S., & Islam, M. (s. f.). MOGA-II for an Automotive Cooling Duct Optimization on Distributed Resources. Evolutionary Multi-Criterion Optimization, 633-644. doi:10.1007/978-3-540-70928-2_48 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem