Varga, S., Oliveira, A. C., & Diaconu, B. (2009). Influence of geometrical factors on steam ejector performance – A numerical assessment. International Journal of Refrigeration, 32(7), 1694-1701. doi:10.1016/j.ijrefrig.2009.05.009
Yan, J., Cai, W., & Li, Y. (2012). Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant. Renewable Energy, 46, 155-163. doi:10.1016/j.renene.2012.03.031
He, S., Li, Y., & Wang, R. Z. (2009). Progress of mathematical modeling on ejectors. Renewable and Sustainable Energy Reviews, 13(8), 1760-1780. doi:10.1016/j.rser.2008.09.032
[+]
Varga, S., Oliveira, A. C., & Diaconu, B. (2009). Influence of geometrical factors on steam ejector performance – A numerical assessment. International Journal of Refrigeration, 32(7), 1694-1701. doi:10.1016/j.ijrefrig.2009.05.009
Yan, J., Cai, W., & Li, Y. (2012). Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant. Renewable Energy, 46, 155-163. doi:10.1016/j.renene.2012.03.031
He, S., Li, Y., & Wang, R. Z. (2009). Progress of mathematical modeling on ejectors. Renewable and Sustainable Energy Reviews, 13(8), 1760-1780. doi:10.1016/j.rser.2008.09.032
Zhu, Y., Cai, W., Wen, C., & Li, Y. (2009). Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 29(5-6), 898-905. doi:10.1016/j.applthermaleng.2008.04.025
Jia, Y., & Wenjian, C. (2012). Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant. Energy Conversion and Management, 53(1), 240-246. doi:10.1016/j.enconman.2011.09.002
Wang, L., Yan, J., Wang, C., & Li, X. (2017). Numerical study on optimization of ejector primary nozzle geometries. International Journal of Refrigeration, 76, 219-229. doi:10.1016/j.ijrefrig.2017.02.010
Ruangtrakoon, N., Thongtip, T., Aphornratana, S., & Sriveerakul, T. (2013). CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle. International Journal of Thermal Sciences, 63, 133-145. doi:10.1016/j.ijthermalsci.2012.07.009
Dong, J., Kang, C. L., Wang, H. M., & Ma, H. B. (2016). Experimental Investigation of Steam Ejector System With an Extra Low Generating Temperature. Journal of Thermal Science and Engineering Applications, 8(2). doi:10.1115/1.4032483
Soroureddin, A., Mehr, A. S., Mahmoudi, S., & Yari, M. (2013). An experimental and theoretical study of a jet-pump refrigeration system designed using a new two-dimensional model for the entrainment region of the ejector. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(4), 486-497. doi:10.1177/0957650913477092
Zhu, Y., & Jiang, P. (2014). Experimental and analytical studies on the shock wave length in convergent and convergent–divergent nozzle ejectors. Energy Conversion and Management, 88, 907-914. doi:10.1016/j.enconman.2014.09.023
Zhu, Y., & Jiang, P. (2014). Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance. International Journal of Refrigeration, 40, 31-42. doi:10.1016/j.ijrefrig.2013.11.008
Sargolzaei, J., Pirzadi Jahromi, M. R., & Saljoughi, E. (2010). Triple-Choking Model for Ejector. Journal of Thermal Science and Engineering Applications, 2(2). doi:10.1115/1.4002752
Armstead, J. R., & Miers, S. A. (2013). Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines. Journal of Thermal Science and Engineering Applications, 6(1). doi:10.1115/1.4024882
Luján, J. M., Climent, H., Dolz, V., Moratal, A., Borges-Alejo, J., & Soukeur, Z. (2016). Potential of exhaust heat recovery for intake charge heating in a diesel engine transient operation at cold conditions. Applied Thermal Engineering, 105, 501-508. doi:10.1016/j.applthermaleng.2016.03.028
Aghaali, H., & Ångström, H.-E. (2015). A review of turbocompounding as a waste heat recovery system for internal combustion engines. Renewable and Sustainable Energy Reviews, 49, 813-824. doi:10.1016/j.rser.2015.04.144
Hsiao, Y. Y., Chang, W. C., & Chen, S. L. (2010). A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 35(3), 1447-1454. doi:10.1016/j.energy.2009.11.030
In, B. D., & Lee, K. H. (2015). A study of a thermoelectric generator applied to a diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(1), 133-143. doi:10.1177/0954407015576440
Dolz, V., Novella, R., García, A., & Sánchez, J. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering, 36, 269-278. doi:10.1016/j.applthermaleng.2011.10.025
Aly, S. E. (1988). Diesel engine waste-heat power cycle. Applied Energy, 29(3), 179-189. doi:10.1016/0306-2619(88)90027-x
Galindo, J., Ruiz, S., Dolz, V., Royo-Pascual, L., Haller, R., Nicolas, B., & Glavatskaya, Y. (2015). Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander. Energy Conversion and Management, 103, 519-532. doi:10.1016/j.enconman.2015.06.085
Glover, S., Douglas, R., Glover, L., & McCullough, G. (2014). Preliminary analysis of organic Rankine cycles to improve vehicle efficiency. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228(10), 1142-1153. doi:10.1177/0954407014528904
Zegenhagen, M. T., & Ziegler, F. (2015). Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines. Applied Energy, 160, 221-230. doi:10.1016/j.apenergy.2015.09.057
Novella, R., Dolz, V., Martín, J., & Royo-Pascual, L. (2017). Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine. Applied Thermal Engineering, 111, 257-270. doi:10.1016/j.applthermaleng.2016.09.084
Galindo, J., Dolz, V., Tiseira, A., & Ponce-Mora, A. (2019). Thermodynamic analysis and optimization of a jet ejector refrigeration cycle used to cool down the intake air in an IC engine. International Journal of Refrigeration, 103, 253-263. doi:10.1016/j.ijrefrig.2019.04.019
Galindo, J., Serrano, J., Dolz, V., & Kleut, P. (2015). Brayton cycle for internal combustion engine exhaust gas waste heat recovery. Advances in Mechanical Engineering, 7(6), 168781401559031. doi:10.1177/1687814015590314
Zegenhagen, M. T., & Ziegler, F. (2015). Experimental investigation of the characteristics of a jet-ejector and a jet-ejector cooling system operating with R134a as a refrigerant. International Journal of Refrigeration, 56, 173-185. doi:10.1016/j.ijrefrig.2015.01.001
Chen, X., Worall, M., Omer, S., Su, Y., & Riffat, S. (2013). Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle. Applied Energy, 102, 931-942. doi:10.1016/j.apenergy.2012.09.032
Sriveerakul, T., Aphornratana, S., & Chunnanond, K. (2007). Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries. International Journal of Thermal Sciences, 46(8), 823-833. doi:10.1016/j.ijthermalsci.2006.10.012
Bartosiewicz, Y., Aidoun, Z., Desevaux, P., & Mercadier, Y. (2005). Numerical and experimental investigations on supersonic ejectors. International Journal of Heat and Fluid Flow, 26(1), 56-70. doi:10.1016/j.ijheatfluidflow.2004.07.003
Mazzelli, F., Little, A. B., Garimella, S., & Bartosiewicz, Y. (2015). Computational and experimental analysis of supersonic air ejector: Turbulence modeling and assessment of 3D effects. International Journal of Heat and Fluid Flow, 56, 305-316. doi:10.1016/j.ijheatfluidflow.2015.08.003
Mazzelli, F., & Milazzo, A. (2015). Performance analysis of a supersonic ejector cycle working with R245fa. International Journal of Refrigeration, 49, 79-92. doi:10.1016/j.ijrefrig.2014.09.020
Croquer, S., Poncet, S., & Aidoun, Z. (2016). Turbulence modeling of a single-phase R134a supersonic ejector. Part 1: Numerical benchmark. International Journal of Refrigeration, 61, 140-152. doi:10.1016/j.ijrefrig.2015.07.030
Lee, Y., & Jung, D. (2012). A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Applied Thermal Engineering, 35, 240-242. doi:10.1016/j.applthermaleng.2011.09.004
Vaghela, J. K. (2017). Comparative Evaluation of an Automobile Air - Conditioning System Using R134a and Its Alternative Refrigerants. Energy Procedia, 109, 153-160. doi:10.1016/j.egypro.2017.03.083
Wang, L., Liu, J., Zou, T., Du, J., & Jia, F. (2018). Auto-tuning ejector for refrigeration system. Energy, 161, 536-543. doi:10.1016/j.energy.2018.07.110
Chen, S., Chen, G., & Fang, L. (2015). An experimental study and 1-D analysis of an ejector with a movable primary nozzle that operates with R236fa. International Journal of Refrigeration, 60, 19-25. doi:10.1016/j.ijrefrig.2015.08.011
Zegenhagen, M. T., & Ziegler, F. (2015). A one-dimensional model of a jet-ejector in critical double choking operation with R134a as a refrigerant including real gas effects. International Journal of Refrigeration, 55, 72-84. doi:10.1016/j.ijrefrig.2015.03.013
Besagni, G., Mereu, R., Chiesa, P., & Inzoli, F. (2015). An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation. Energy Conversion and Management, 105, 697-715. doi:10.1016/j.enconman.2015.08.029
Gagan, J., Smierciew, K., Butrymowicz, D., & Karwacki, J. (2014). Comparative study of turbulence models in application to gas ejectors. International Journal of Thermal Sciences, 78, 9-15. doi:10.1016/j.ijthermalsci.2013.11.009
Hakkaki-Fard, A., Aidoun, Z., & Ouzzane, M. (2015). A computational methodology for ejector design and performance maximisation. Energy Conversion and Management, 105, 1291-1302. doi:10.1016/j.enconman.2015.08.070
Besagni, G., & Inzoli, F. (2017). Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches. Applied Thermal Engineering, 117, 122-144. doi:10.1016/j.applthermaleng.2017.02.011
Pianthong, K., Seehanam, W., Behnia, M., Sriveerakul, T., & Aphornratana, S. (2007). Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Conversion and Management, 48(9), 2556-2564. doi:10.1016/j.enconman.2007.03.021
Richter, M., McLinden, M. O., & Lemmon, E. W. (2011). Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p–ρ–T Measurements and an Equation of State. Journal of Chemical & Engineering Data, 56(7), 3254-3264. doi:10.1021/je200369m
García del Valle, J., Saíz Jabardo, J. M., Castro Ruiz, F., & San José Alonso, J. F. (2014). An experimental investigation of a R-134a ejector refrigeration system. International Journal of Refrigeration, 46, 105-113. doi:10.1016/j.ijrefrig.2014.05.028
Poles, S., Geremia, P., Campos, F., Weston, S., & Islam, M. (s. f.). MOGA-II for an Automotive Cooling Duct Optimization on Distributed Resources. Evolutionary Multi-Criterion Optimization, 633-644. doi:10.1007/978-3-540-70928-2_48
[-]