- -

A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus

Show full item record

Sáez-Sánchez, C.; Martínez, C.; Montero-Pau, J.; Esteras Gómez, C.; Sifres Cuerda, AG.; Blanca Postigo, JM.; Ferriol Molina, M.... (2020). A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus. Frontiers in Plant Science. 11:1-18. https://doi.org/10.3389/fpls.2020.00207

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167976

Files in this item

Item Metadata

Title: A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus
Author: Sáez-Sánchez, Cristina Martínez, Cecilia Montero-Pau, Javier Esteras Gómez, Cristina Sifres Cuerda, Alicia Gemma Blanca Postigo, José Miguel Ferriol Molina, María López Del Rincón, Carmelo Picó Sirvent, María Belén
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Issued date:
Abstract:
[EN] Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most ...[+]
Subjects: ToLCNDV , Resistance , Cucurbita , Zucchini , QTL , Synteny
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2020.00207
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2020.00207
Project ID:
GV/GV/2016/188
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85563-C2-1-R/ES/CONTROL MULTIDISCIPLINAR DE ENFERMEDADES FUNGICAS Y VIROSIS EN MELON Y SANDIA: UN NUEVO RETO/
INIA/RTA2017-00061-C03-03
GV/PROMETEO/2017/078
info:eu-repo/grantAgreement/MINECO//FJCI-2014-19817/ES/FJCI-2014-19817/
Thanks:
This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades, cofunded with FEDER funds [Project Nos. AGL2017-85563-C2-1-R and RTA2017-00061-C03-03 (INIA)] and by PROMETEO project 2017/078 (to ...[+]
Type: Artículo

References

Capuozzo, C., Formisano, G., Iovieno, P., Andolfo, G., Tomassoli, L., Barbella, M. M., … Ercolano, M. R. (2017). Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding, 37(8). doi:10.1007/s11032-017-0698-5

Chang, H.-H., Ku, H.-M., Tsai, W.-S., Chien, R.-C., & Jan, F.-J. (2010). Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. European Journal of Plant Pathology, 127(2), 219-228. doi:10.1007/s10658-010-9586-0

Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Källberg, M., … Saunders, C. T. (2015). Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics, 32(8), 1220-1222. doi:10.1093/bioinformatics/btv710 [+]
Capuozzo, C., Formisano, G., Iovieno, P., Andolfo, G., Tomassoli, L., Barbella, M. M., … Ercolano, M. R. (2017). Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding, 37(8). doi:10.1007/s11032-017-0698-5

Chang, H.-H., Ku, H.-M., Tsai, W.-S., Chien, R.-C., & Jan, F.-J. (2010). Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. European Journal of Plant Pathology, 127(2), 219-228. doi:10.1007/s10658-010-9586-0

Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Källberg, M., … Saunders, C. T. (2015). Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics, 32(8), 1220-1222. doi:10.1093/bioinformatics/btv710

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695

Decker-Walters, D. S., & Walters, T. W. (2000). Squash. The Cambridge World History of Food, 335-351. doi:10.1017/chol9780521402149.034

Dhillon, N. P. S., Monforte, A. J., Pitrat, M., Pandey, S., Singh, P. K., Reitsma, K. R., … McCreight, J. D. (2011). Melon Landraces of India: Contributions and Importance. Plant Breeding Reviews, 85-150. doi:10.1002/9781118100509.ch3

Díaz, J. A., Nieto, C., Moriones, E., & Aranda, M. A. (2002). Spanish Melon necrotic spot virus Isolate Overcomes the Resistance Conferred by the Recessive nsv Gene of Melon. Plant Disease, 86(6), 694-694. doi:10.1094/pdis.2002.86.6.694c

DIAZ-PENDON, J. A., TRUNIGER, V., NIETO, C., GARCIA-MAS, J., BENDAHMANE, A., & ARANDA, M. A. (2004). Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology, 5(3), 223-233. doi:10.1111/j.1364-3703.2004.00223.x

Gallois, J.-L., Moury, B., & German-Retana, S. (2018). Role of the Genetic Background in Resistance to Plant Viruses. International Journal of Molecular Sciences, 19(10), 2856. doi:10.3390/ijms19102856

Garcia-Ruiz, H. (2018). Susceptibility Genes to Plant Viruses. Viruses, 10(9), 484. doi:10.3390/v10090484

Giner, A., Pascual, L., Bourgeois, M., Gyetvai, G., Rios, P., Picó, B., … Martín-Hernández, A. M. (2017). A mutation in the melon Vacuolar Protein Sorting 41prevents systemic infection of Cucumber mosaic virus. Scientific Reports, 7(1). doi:10.1038/s41598-017-10783-3

Haider, M. S., Tahir, M., Latif, S., & Briddon, R. W. (2006). First report of Tomato leaf curl New Delhi virus infecting Eclipta prostrata in Pakistan. Plant Pathology, 55(2), 285-285. doi:10.1111/j.1365-3059.2005.01278.x

Hashimoto, M., Neriya, Y., Yamaji, Y., & Namba, S. (2016). Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01695

Huang, T.-S., Wei, T., Laliberteݩ, J.-F., & Wang, A. (2009). A Host RNA Helicase-Like Protein, AtRH8, Interacts with the Potyviral Genome-Linked Protein, VPg, Associates with the Virus Accumulation Complex, and Is Essential for Infection. Plant Physiology, 152(1), 255-266. doi:10.1104/pp.109.147983

Huh, S. U., Choi, L. M., Lee, G.-J., Kim, Y. J., & Paek, K.-H. (2012). Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Science, 197, 50-58. doi:10.1016/j.plantsci.2012.08.013

Hussain, M., Mansoor, S., Iram, S., Zafar, Y., & Briddon, R. W. (2004). First report of Tomato leaf curl New Delhi virus affecting chilli pepper in Pakistan. Plant Pathology, 53(6), 794-794. doi:10.1111/j.1365-3059.2004.01073.x

Ishibashi, K., Miyashita, S., Katoh, E., & Ishikawa, M. (2012). Host membrane proteins involved in the replication of tobamovirus RNA. Current Opinion in Virology, 2(6), 699-704. doi:10.1016/j.coviro.2012.09.011

Islam, S., Munshi, A. D., Mandal, B., Kumar, R., & Behera, T. K. (2010). Genetics of resistance in Luffa cylindrica Roem. against Tomato leaf curl New Delhi virus. Euphytica, 174(1), 83-89. doi:10.1007/s10681-010-0138-7

Islam, S., Anilabh Das, M., Verma, M., Arya, L., Mandal, B., Tusar Kanti, B., … Sanjay Kumar, L. (2011). Screening ofLuffa cylindricaRoem. for resistance againstTomato Leaf Curl New Delhi Virus, inheritance of resistance, and identification of SRAP markers linked to the single dominant resistance gene. The Journal of Horticultural Science and Biotechnology, 86(6), 661-667. doi:10.1080/14620316.2011.11512819

Ito, T., Sharma, P., Kittipakorn, K., & Ikegami, M. (2008). Complete nucleotide sequence of a new isolate of tomato leaf curl New Delhi virus infecting cucumber, bottle gourd and muskmelon in Thailand. Archives of Virology, 153(3), 611-613. doi:10.1007/s00705-007-0029-y

Dirk, J., Almudena, S., Oscar, C., & Leticia, R. (2017). Genetic population structure of Bemisia tabaci in Spain associated with Tomato leaf curl New Delhi virus – short communication. Plant Protection Science, 53(No. 1), 25-31. doi:10.17221/62/2016-pps

Joehanes, R., & Nelson, J. C. (2008). QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics, 24(23), 2788-2789. doi:10.1093/bioinformatics/btn523

Juárez, M., Tovar, R., Fiallo-Olivé, E., Aranda, M. A., Gosálvez, B., Castillo, P., … Navas-Castillo, J. (2014). First Detection of Tomato leaf curl New Delhi virus Infecting Zucchini in Spain. Plant Disease, 98(6), 857-857. doi:10.1094/pdis-10-13-1050-pdn

Jyothsna, P., Haq, Q. M. I., Singh, P., Sumiya, K. V., Praveen, S., Rawat, R., … Malathi, V. G. (2013). Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Applied Microbiology and Biotechnology, 97(12), 5457-5471. doi:10.1007/s00253-012-4685-9

Kang, B.-C., Yeam, I., & Jahn, M. M. (2005). Genetics of Plant Virus Resistance. Annual Review of Phytopathology, 43(1), 581-621. doi:10.1146/annurev.phyto.43.011205.141140

Kheireddine, A., Sifres, A., Sáez, C., Picó, B., & López, C. (2019). First Report of Tomato Leaf Curl New Delhi Virus Infecting Cucurbit Plants in Algeria. Plant Disease, 103(12), 3291-3291. doi:10.1094/pdis-05-19-1118-pdn

Kielbasa, S. M., Wan, R., Sato, K., Horton, P., & Frith, M. C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Research, 21(3), 487-493. doi:10.1101/gr.113985.110

Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352

Li, L. (2003). OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research, 13(9), 2178-2189. doi:10.1101/gr.1224503

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

López, C., Ferriol, M., & Picó, M. B. (2015). Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica, 204(3), 679-691. doi:10.1007/s10681-015-1371-x

McCreight, J. D., Wintermantel, W. M., Natwick, E. T., Sinclair, J. W., Crosby, K. M., & Gómez-Guillamón, M. L. (2017). Recessive resistance to CYSDV in melon TGR 1551. Acta Horticulturae, (1151), 101-108. doi:10.17660/actahortic.2017.1151.17

Millard, S. P. (2013). EnvStats. doi:10.1007/978-1-4614-8456-1

Montero-Pau, J., Blanca, J., Bombarely, A., Ziarsolo, P., Esteras, C., Martí-Gómez, C., … Cañizares, J. (2017). De novoassembly of the zucchini genome reveals a whole-genome duplication associated with the origin of theCucurbitagenus. Plant Biotechnology Journal, 16(6), 1161-1171. doi:10.1111/pbi.12860

Moriones, E., Praveen, S., & Chakraborty, S. (2017). Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses, 9(10), 264. doi:10.3390/v9100264

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. doi:10.1093/molbev/msu300

Nicaise, V. (2014). Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00660

Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., … Bendahmane, A. (2006). AneIF4Eallele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. The Plant Journal, 48(3), 452-462. doi:10.1111/j.1365-313x.2006.02885.x

Orfanidou, C. G., Malandraki, I., Beris, D., Kektsidou, O., Vassilakos, N., Varveri, C., … Maliogka, V. I. (2019). First report of tomato leaf curl New Delhi virus in zucchini crops in Greece. Journal of Plant Pathology, 101(3), 799-799. doi:10.1007/s42161-019-00265-y

Pachner, M., Paris, H. S., & Lelley, T. (2011). Genes for Resistance to Zucchini Yellow Mosaic in Tropical Pumpkin. Journal of Heredity, 102(3), 330-335. doi:10.1093/jhered/esr006

Pachner, M., Paris, H. S., Winkler, J., & Lelley, T. (2014). Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breeding, 134(1), 121-128. doi:10.1111/pbr.12219

Padidam, M., Beachy, R. N., & Fauquet, C. M. (1995). Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. Journal of General Virology, 76(1), 25-35. doi:10.1099/0022-1317-76-1-25

Padmanabhan, C., Ma, Q., Shekasteband, R., Stewart, K. S., Hutton, S. F., Scott, J. W., … Ling, K.-S. (2019). Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to tomato spotted wilt tospovirus. Scientific Reports, 9(1). doi:10.1038/s41598-019-44100-x

PARIS, H. S., & COHEN, S. (2000). Oligogenic inheritance for resistance to Zucchini yellow mosaic virus in Cucurbita pepo. Annals of Applied Biology, 136(3), 209-214. doi:10.1111/j.1744-7348.2000.tb00027.x

Paris, H. S., Cohen, S., Burger, Y., & Yoseph, R. (1988). Single-gene resistance to zucchini yellow mosaic virus in Cucurbita moschata. Euphytica, 37(1), 27-29. doi:10.1007/bf00037219

Pratap, D., Kashikar, A. R., & Mukherjee, S. K. (2011). Molecular characterization and infectivity of a Tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virology Journal, 8(1). doi:10.1186/1743-422x-8-305

Romay, G., Pitrat, M., Lecoq, H., Wipf-Scheibel, C., Millot, P., Girardot, G., & Desbiez, C. (2019). Resistance Against Melon Chlorotic Mosaic Virus and Tomato Leaf Curl New Delhi Virus in Melon. Plant Disease, 103(11), 2913-2919. doi:10.1094/pdis-02-19-0298-re

Rosen, R., Kanakala, S., Kliot, A., Cathrin Pakkianathan, B., Farich, B. A., Santana-Magal, N., … Ghanim, M. (2015). Persistent, circulative transmission of begomoviruses by whitefly vectors. Current Opinion in Virology, 15, 1-8. doi:10.1016/j.coviro.2015.06.008

Roy, A., Spoorthi, P., Panwar, G., Bag, M. K., Prasad, T. V., Kumar, G., … Dutta, M. (2012). Molecular Evidence for Occurrence of Tomato leaf curl New Delhi virus in Ash Gourd (Benincasa hispida) Germplasm Showing a Severe Yellow Stunt Disease in India. Indian Journal of Virology, 24(1), 74-77. doi:10.1007/s13337-012-0115-y

Sáez, C., Esteras, C., Martínez, C., Ferriol, M., Dhillon, N. P. S., López, C., & Picó, B. (2017). Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Reports, 36(10), 1571-1584. doi:10.1007/s00299-017-2175-3

Sáez, C., Martínez, C., Ferriol, M., Manzano, S., Velasco, L., Jamilena, M., … Picó, B. (2016). Resistance to Tomato leaf curl New Delhi virus in Cucurbita spp. Annals of Applied Biology, 169(1), 91-105. doi:10.1111/aab.12283

Sifres, A., Sáez, C., Ferriol, M., Selmani, E. A., Riado, J., Picó, B., & López, C. (2018). First Report of Tomato leaf curl New Delhi virus Infecting Zucchini in Morocco. Plant Disease, 102(5), 1045-1045. doi:10.1094/pdis-10-17-1600-pdn

Singh, A. K., Mishra, K. K., Chattopadhyay, B., & Chakraborty, S. (2009). Biological and molecular characterization of a begomovirus associated with yellow mosaic vein mosaic disease of pumpkin from Northern India. Virus Genes, 39(3), 359-370. doi:10.1007/s11262-009-0396-4

Sayed, S. S., Sajjad, K., Anupam, V., Adel, M. A., Adeel, G. C., Ghazi, A. D., … al. (2013). Characterization of Tomato Leaf Curl New Delhi Virus infecting cucurbits: Evidence for sap transmission in a host specific manner. African Journal of Biotechnology, 12(32), 5000-5009. doi:10.5897/ajb2013.12012

Sohrab, S. S., Mandal, B., Pant, R. P., & Varma, A. (2003). First Report of Association of Tomato leaf curl virus-New Delhi with Yellow Mosaic Disease of Luffa cylindrica in India. Plant Disease, 87(9), 1148-1148. doi:10.1094/pdis.2003.87.9.1148a

Srivastava, A., Kumar, S., Jaidi, M., Raj, S. K., & Shukla, S. K. (2016). First Report of Tomato leaf curl New Delhi virus on Opium Poppy (Papaver somniferum) in India. Plant Disease, 100(1), 232. doi:10.1094/pdis-08-15-0883-pdn

Srivastava, K. M., Hallan, V., Raizada, R. K., Chandra, G., Singh, B. P., & Sane, P. V. (1995). Molecular cloning of Indian tomato leaf curl vims genome following a simple method of concentrating the supercoiled replicative form of viral DNA. Journal of Virological Methods, 51(2-3), 297-304. doi:10.1016/0166-0934(94)00122-w

Sun, H., Wu, S., Zhang, G., Jiao, C., Guo, S., Ren, Y., … Xu, Y. (2017). Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Molecular Plant, 10(10), 1293-1306. doi:10.1016/j.molp.2017.09.003

Sundararaj, D., Denison, M. I. J., Gunasekaran, D., Uma, M. R. S., Thangavelu, R. M., & Kathiravan, K. (2020). First Report of Tomato Leaf Curl New Delhi Virus Infecting Crossandra infundibuliformis in India. Plant Disease, 104(3), 999. doi:10.1094/pdis-08-19-1764-pdn

Thorvaldsdottir, H., Robinson, J. T., & Mesirov, J. P. (2012). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178-192. doi:10.1093/bib/bbs017

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115-e115. doi:10.1093/nar/gks596

Usharani, K. S., Surendranath, B., Paul-Khurana, S. M., Garg, I. D., & Malathi, V. G. (2004). Potato leaf curl - a new disease of potato in northern India caused by a strain of Tomato leaf curl New Delhi virus. Plant Pathology, 53(2), 235-235. doi:10.1111/j.0032-0862.2004.00959.x

Vossen, R. H. A. M., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019

Yang, L., Koo, D.-H., Li, D., Zhang, T., Jiang, J., Luan, F., … Weng, Y. (2013). Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy inCucumis. The Plant Journal, 77(1), 16-30. doi:10.1111/tpj.12355

Yang, X., Caro, M., Hutton, S. F., Scott, J. W., Guo, Y., Wang, X., … Du, Y. (2014). Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding. doi:10.1007/s11032-014-0072-9

Zaidi, S. S.-A., Shafiq, M., Amin, I., Scheffler, B. E., Scheffler, J. A., Briddon, R. W., & Mansoor, S. (2016). Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan. PLOS ONE, 11(5), e0155520. doi:10.1371/journal.pone.0155520

Zaidi, S. S., Shakir, S., Malik, H. J., Farooq, M., Amin, I., & Mansoor, S. (2017). First Report of Tomato leaf curl New Delhi virus on Calotropis procera, a Weed as Potential Reservoir Begomovirus Host in Pakistan. Plant Disease, 101(6), 1071. doi:10.1094/pdis-10-16-1539-pdn

Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.1457

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record