- -

A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sáez-Sánchez, Cristina es_ES
dc.contributor.author Martínez, Cecilia es_ES
dc.contributor.author Montero-Pau, Javier es_ES
dc.contributor.author Esteras Gómez, Cristina es_ES
dc.contributor.author Sifres Cuerda, Alicia Gemma es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Ferriol Molina, María es_ES
dc.contributor.author López Del Rincón, Carmelo es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.date.accessioned 2021-06-15T03:31:19Z
dc.date.available 2021-06-15T03:31:19Z
dc.date.issued 2020-03-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167976
dc.description.abstract [EN] Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata x C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades, cofunded with FEDER funds [Project Nos. AGL2017-85563-C2-1-R and RTA2017-00061-C03-03 (INIA)] and by PROMETEO project 2017/078 (to promote excellence groups) by the Conselleria d'Educacio, Investigacio, Cultura i Esports (Generalitat Valenciana). CS is a recipient of a predoctoral fellowship from Generalitat Valenciana, cofunded by the Operational Program of the European Social Fund (FSECV 2014-2020) (Grant No. ACIF/2016/188). CM was a recipient of a postdoctoral Juan de la Cierva Formation (2014) fellowship from Spanish Ministerio de Ciencia, Innovacion y Universidades (Grant No. FJCI-2014-19817). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ToLCNDV es_ES
dc.subject Resistance es_ES
dc.subject Cucurbita es_ES
dc.subject Zucchini es_ES
dc.subject QTL es_ES
dc.subject Synteny es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification GENETICA es_ES
dc.title A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2020.00207 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2016%2F188/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85563-C2-1-R/ES/CONTROL MULTIDISCIPLINAR DE ENFERMEDADES FUNGICAS Y VIROSIS EN MELON Y SANDIA: UN NUEVO RETO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTA2017-00061-C03-03/ES/Avances en el control de los virus ToLCNDV y CGMMV en cucurbitáceas mediante mejora genética/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F078/ES/Selección de variedades tradicionales y desarrollo de nuevas variedades de cucurbitáceas adaptadas a la producción ecológica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2014-19817/ES/FJCI-2014-19817/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Sáez-Sánchez, C.; Martínez, C.; Montero-Pau, J.; Esteras Gómez, C.; Sifres Cuerda, AG.; Blanca Postigo, JM.; Ferriol Molina, M.... (2020). A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus. Frontiers in Plant Science. 11:1-18. https://doi.org/10.3389/fpls.2020.00207 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2020.00207 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 32265946 es_ES
dc.identifier.pmcid PMC7100279 es_ES
dc.relation.pasarela S\415771 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Capuozzo, C., Formisano, G., Iovieno, P., Andolfo, G., Tomassoli, L., Barbella, M. M., … Ercolano, M. R. (2017). Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding, 37(8). doi:10.1007/s11032-017-0698-5 es_ES
dc.description.references Chang, H.-H., Ku, H.-M., Tsai, W.-S., Chien, R.-C., & Jan, F.-J. (2010). Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. European Journal of Plant Pathology, 127(2), 219-228. doi:10.1007/s10658-010-9586-0 es_ES
dc.description.references Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Källberg, M., … Saunders, C. T. (2015). Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics, 32(8), 1220-1222. doi:10.1093/bioinformatics/btv710 es_ES
dc.description.references Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695 es_ES
dc.description.references Decker-Walters, D. S., & Walters, T. W. (2000). Squash. The Cambridge World History of Food, 335-351. doi:10.1017/chol9780521402149.034 es_ES
dc.description.references Dhillon, N. P. S., Monforte, A. J., Pitrat, M., Pandey, S., Singh, P. K., Reitsma, K. R., … McCreight, J. D. (2011). Melon Landraces of India: Contributions and Importance. Plant Breeding Reviews, 85-150. doi:10.1002/9781118100509.ch3 es_ES
dc.description.references Díaz, J. A., Nieto, C., Moriones, E., & Aranda, M. A. (2002). Spanish Melon necrotic spot virus Isolate Overcomes the Resistance Conferred by the Recessive nsv Gene of Melon. Plant Disease, 86(6), 694-694. doi:10.1094/pdis.2002.86.6.694c es_ES
dc.description.references DIAZ-PENDON, J. A., TRUNIGER, V., NIETO, C., GARCIA-MAS, J., BENDAHMANE, A., & ARANDA, M. A. (2004). Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology, 5(3), 223-233. doi:10.1111/j.1364-3703.2004.00223.x es_ES
dc.description.references Gallois, J.-L., Moury, B., & German-Retana, S. (2018). Role of the Genetic Background in Resistance to Plant Viruses. International Journal of Molecular Sciences, 19(10), 2856. doi:10.3390/ijms19102856 es_ES
dc.description.references Garcia-Ruiz, H. (2018). Susceptibility Genes to Plant Viruses. Viruses, 10(9), 484. doi:10.3390/v10090484 es_ES
dc.description.references Giner, A., Pascual, L., Bourgeois, M., Gyetvai, G., Rios, P., Picó, B., … Martín-Hernández, A. M. (2017). A mutation in the melon Vacuolar Protein Sorting 41prevents systemic infection of Cucumber mosaic virus. Scientific Reports, 7(1). doi:10.1038/s41598-017-10783-3 es_ES
dc.description.references Haider, M. S., Tahir, M., Latif, S., & Briddon, R. W. (2006). First report of Tomato leaf curl New Delhi virus infecting Eclipta prostrata in Pakistan. Plant Pathology, 55(2), 285-285. doi:10.1111/j.1365-3059.2005.01278.x es_ES
dc.description.references Hashimoto, M., Neriya, Y., Yamaji, Y., & Namba, S. (2016). Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01695 es_ES
dc.description.references Huang, T.-S., Wei, T., Laliberteݩ, J.-F., & Wang, A. (2009). A Host RNA Helicase-Like Protein, AtRH8, Interacts with the Potyviral Genome-Linked Protein, VPg, Associates with the Virus Accumulation Complex, and Is Essential for Infection. Plant Physiology, 152(1), 255-266. doi:10.1104/pp.109.147983 es_ES
dc.description.references Huh, S. U., Choi, L. M., Lee, G.-J., Kim, Y. J., & Paek, K.-H. (2012). Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Science, 197, 50-58. doi:10.1016/j.plantsci.2012.08.013 es_ES
dc.description.references Hussain, M., Mansoor, S., Iram, S., Zafar, Y., & Briddon, R. W. (2004). First report of Tomato leaf curl New Delhi virus affecting chilli pepper in Pakistan. Plant Pathology, 53(6), 794-794. doi:10.1111/j.1365-3059.2004.01073.x es_ES
dc.description.references Ishibashi, K., Miyashita, S., Katoh, E., & Ishikawa, M. (2012). Host membrane proteins involved in the replication of tobamovirus RNA. Current Opinion in Virology, 2(6), 699-704. doi:10.1016/j.coviro.2012.09.011 es_ES
dc.description.references Islam, S., Munshi, A. D., Mandal, B., Kumar, R., & Behera, T. K. (2010). Genetics of resistance in Luffa cylindrica Roem. against Tomato leaf curl New Delhi virus. Euphytica, 174(1), 83-89. doi:10.1007/s10681-010-0138-7 es_ES
dc.description.references Islam, S., Anilabh Das, M., Verma, M., Arya, L., Mandal, B., Tusar Kanti, B., … Sanjay Kumar, L. (2011). Screening ofLuffa cylindricaRoem. for resistance againstTomato Leaf Curl New Delhi Virus, inheritance of resistance, and identification of SRAP markers linked to the single dominant resistance gene. The Journal of Horticultural Science and Biotechnology, 86(6), 661-667. doi:10.1080/14620316.2011.11512819 es_ES
dc.description.references Ito, T., Sharma, P., Kittipakorn, K., & Ikegami, M. (2008). Complete nucleotide sequence of a new isolate of tomato leaf curl New Delhi virus infecting cucumber, bottle gourd and muskmelon in Thailand. Archives of Virology, 153(3), 611-613. doi:10.1007/s00705-007-0029-y es_ES
dc.description.references Dirk, J., Almudena, S., Oscar, C., & Leticia, R. (2017). Genetic population structure of Bemisia tabaci in Spain associated with Tomato leaf curl New Delhi virus – short communication. Plant Protection Science, 53(No. 1), 25-31. doi:10.17221/62/2016-pps es_ES
dc.description.references Joehanes, R., & Nelson, J. C. (2008). QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics, 24(23), 2788-2789. doi:10.1093/bioinformatics/btn523 es_ES
dc.description.references Juárez, M., Tovar, R., Fiallo-Olivé, E., Aranda, M. A., Gosálvez, B., Castillo, P., … Navas-Castillo, J. (2014). First Detection of Tomato leaf curl New Delhi virus Infecting Zucchini in Spain. Plant Disease, 98(6), 857-857. doi:10.1094/pdis-10-13-1050-pdn es_ES
dc.description.references Jyothsna, P., Haq, Q. M. I., Singh, P., Sumiya, K. V., Praveen, S., Rawat, R., … Malathi, V. G. (2013). Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Applied Microbiology and Biotechnology, 97(12), 5457-5471. doi:10.1007/s00253-012-4685-9 es_ES
dc.description.references Kang, B.-C., Yeam, I., & Jahn, M. M. (2005). Genetics of Plant Virus Resistance. Annual Review of Phytopathology, 43(1), 581-621. doi:10.1146/annurev.phyto.43.011205.141140 es_ES
dc.description.references Kheireddine, A., Sifres, A., Sáez, C., Picó, B., & López, C. (2019). First Report of Tomato Leaf Curl New Delhi Virus Infecting Cucurbit Plants in Algeria. Plant Disease, 103(12), 3291-3291. doi:10.1094/pdis-05-19-1118-pdn es_ES
dc.description.references Kielbasa, S. M., Wan, R., Sato, K., Horton, P., & Frith, M. C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Research, 21(3), 487-493. doi:10.1101/gr.113985.110 es_ES
dc.description.references Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3 es_ES
dc.description.references Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352 es_ES
dc.description.references Li, L. (2003). OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research, 13(9), 2178-2189. doi:10.1101/gr.1224503 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references López, C., Ferriol, M., & Picó, M. B. (2015). Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica, 204(3), 679-691. doi:10.1007/s10681-015-1371-x es_ES
dc.description.references McCreight, J. D., Wintermantel, W. M., Natwick, E. T., Sinclair, J. W., Crosby, K. M., & Gómez-Guillamón, M. L. (2017). Recessive resistance to CYSDV in melon TGR 1551. Acta Horticulturae, (1151), 101-108. doi:10.17660/actahortic.2017.1151.17 es_ES
dc.description.references Millard, S. P. (2013). EnvStats. doi:10.1007/978-1-4614-8456-1 es_ES
dc.description.references Montero-Pau, J., Blanca, J., Bombarely, A., Ziarsolo, P., Esteras, C., Martí-Gómez, C., … Cañizares, J. (2017). De novoassembly of the zucchini genome reveals a whole-genome duplication associated with the origin of theCucurbitagenus. Plant Biotechnology Journal, 16(6), 1161-1171. doi:10.1111/pbi.12860 es_ES
dc.description.references Moriones, E., Praveen, S., & Chakraborty, S. (2017). Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses, 9(10), 264. doi:10.3390/v9100264 es_ES
dc.description.references Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. doi:10.1093/molbev/msu300 es_ES
dc.description.references Nicaise, V. (2014). Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00660 es_ES
dc.description.references Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., … Bendahmane, A. (2006). AneIF4Eallele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. The Plant Journal, 48(3), 452-462. doi:10.1111/j.1365-313x.2006.02885.x es_ES
dc.description.references Orfanidou, C. G., Malandraki, I., Beris, D., Kektsidou, O., Vassilakos, N., Varveri, C., … Maliogka, V. I. (2019). First report of tomato leaf curl New Delhi virus in zucchini crops in Greece. Journal of Plant Pathology, 101(3), 799-799. doi:10.1007/s42161-019-00265-y es_ES
dc.description.references Pachner, M., Paris, H. S., & Lelley, T. (2011). Genes for Resistance to Zucchini Yellow Mosaic in Tropical Pumpkin. Journal of Heredity, 102(3), 330-335. doi:10.1093/jhered/esr006 es_ES
dc.description.references Pachner, M., Paris, H. S., Winkler, J., & Lelley, T. (2014). Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breeding, 134(1), 121-128. doi:10.1111/pbr.12219 es_ES
dc.description.references Padidam, M., Beachy, R. N., & Fauquet, C. M. (1995). Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. Journal of General Virology, 76(1), 25-35. doi:10.1099/0022-1317-76-1-25 es_ES
dc.description.references Padmanabhan, C., Ma, Q., Shekasteband, R., Stewart, K. S., Hutton, S. F., Scott, J. W., … Ling, K.-S. (2019). Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to tomato spotted wilt tospovirus. Scientific Reports, 9(1). doi:10.1038/s41598-019-44100-x es_ES
dc.description.references PARIS, H. S., & COHEN, S. (2000). Oligogenic inheritance for resistance to Zucchini yellow mosaic virus in Cucurbita pepo. Annals of Applied Biology, 136(3), 209-214. doi:10.1111/j.1744-7348.2000.tb00027.x es_ES
dc.description.references Paris, H. S., Cohen, S., Burger, Y., & Yoseph, R. (1988). Single-gene resistance to zucchini yellow mosaic virus in Cucurbita moschata. Euphytica, 37(1), 27-29. doi:10.1007/bf00037219 es_ES
dc.description.references Pratap, D., Kashikar, A. R., & Mukherjee, S. K. (2011). Molecular characterization and infectivity of a Tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virology Journal, 8(1). doi:10.1186/1743-422x-8-305 es_ES
dc.description.references Romay, G., Pitrat, M., Lecoq, H., Wipf-Scheibel, C., Millot, P., Girardot, G., & Desbiez, C. (2019). Resistance Against Melon Chlorotic Mosaic Virus and Tomato Leaf Curl New Delhi Virus in Melon. Plant Disease, 103(11), 2913-2919. doi:10.1094/pdis-02-19-0298-re es_ES
dc.description.references Rosen, R., Kanakala, S., Kliot, A., Cathrin Pakkianathan, B., Farich, B. A., Santana-Magal, N., … Ghanim, M. (2015). Persistent, circulative transmission of begomoviruses by whitefly vectors. Current Opinion in Virology, 15, 1-8. doi:10.1016/j.coviro.2015.06.008 es_ES
dc.description.references Roy, A., Spoorthi, P., Panwar, G., Bag, M. K., Prasad, T. V., Kumar, G., … Dutta, M. (2012). Molecular Evidence for Occurrence of Tomato leaf curl New Delhi virus in Ash Gourd (Benincasa hispida) Germplasm Showing a Severe Yellow Stunt Disease in India. Indian Journal of Virology, 24(1), 74-77. doi:10.1007/s13337-012-0115-y es_ES
dc.description.references Sáez, C., Esteras, C., Martínez, C., Ferriol, M., Dhillon, N. P. S., López, C., & Picó, B. (2017). Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Reports, 36(10), 1571-1584. doi:10.1007/s00299-017-2175-3 es_ES
dc.description.references Sáez, C., Martínez, C., Ferriol, M., Manzano, S., Velasco, L., Jamilena, M., … Picó, B. (2016). Resistance to Tomato leaf curl New Delhi virus in Cucurbita spp. Annals of Applied Biology, 169(1), 91-105. doi:10.1111/aab.12283 es_ES
dc.description.references Sifres, A., Sáez, C., Ferriol, M., Selmani, E. A., Riado, J., Picó, B., & López, C. (2018). First Report of Tomato leaf curl New Delhi virus Infecting Zucchini in Morocco. Plant Disease, 102(5), 1045-1045. doi:10.1094/pdis-10-17-1600-pdn es_ES
dc.description.references Singh, A. K., Mishra, K. K., Chattopadhyay, B., & Chakraborty, S. (2009). Biological and molecular characterization of a begomovirus associated with yellow mosaic vein mosaic disease of pumpkin from Northern India. Virus Genes, 39(3), 359-370. doi:10.1007/s11262-009-0396-4 es_ES
dc.description.references Sayed, S. S., Sajjad, K., Anupam, V., Adel, M. A., Adeel, G. C., Ghazi, A. D., … al. (2013). Characterization of Tomato Leaf Curl New Delhi Virus infecting cucurbits: Evidence for sap transmission in a host specific manner. African Journal of Biotechnology, 12(32), 5000-5009. doi:10.5897/ajb2013.12012 es_ES
dc.description.references Sohrab, S. S., Mandal, B., Pant, R. P., & Varma, A. (2003). First Report of Association of Tomato leaf curl virus-New Delhi with Yellow Mosaic Disease of Luffa cylindrica in India. Plant Disease, 87(9), 1148-1148. doi:10.1094/pdis.2003.87.9.1148a es_ES
dc.description.references Srivastava, A., Kumar, S., Jaidi, M., Raj, S. K., & Shukla, S. K. (2016). First Report of Tomato leaf curl New Delhi virus on Opium Poppy (Papaver somniferum) in India. Plant Disease, 100(1), 232. doi:10.1094/pdis-08-15-0883-pdn es_ES
dc.description.references Srivastava, K. M., Hallan, V., Raizada, R. K., Chandra, G., Singh, B. P., & Sane, P. V. (1995). Molecular cloning of Indian tomato leaf curl vims genome following a simple method of concentrating the supercoiled replicative form of viral DNA. Journal of Virological Methods, 51(2-3), 297-304. doi:10.1016/0166-0934(94)00122-w es_ES
dc.description.references Sun, H., Wu, S., Zhang, G., Jiao, C., Guo, S., Ren, Y., … Xu, Y. (2017). Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Molecular Plant, 10(10), 1293-1306. doi:10.1016/j.molp.2017.09.003 es_ES
dc.description.references Sundararaj, D., Denison, M. I. J., Gunasekaran, D., Uma, M. R. S., Thangavelu, R. M., & Kathiravan, K. (2020). First Report of Tomato Leaf Curl New Delhi Virus Infecting Crossandra infundibuliformis in India. Plant Disease, 104(3), 999. doi:10.1094/pdis-08-19-1764-pdn es_ES
dc.description.references Thorvaldsdottir, H., Robinson, J. T., & Mesirov, J. P. (2012). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178-192. doi:10.1093/bib/bbs017 es_ES
dc.description.references Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115-e115. doi:10.1093/nar/gks596 es_ES
dc.description.references Usharani, K. S., Surendranath, B., Paul-Khurana, S. M., Garg, I. D., & Malathi, V. G. (2004). Potato leaf curl - a new disease of potato in northern India caused by a strain of Tomato leaf curl New Delhi virus. Plant Pathology, 53(2), 235-235. doi:10.1111/j.0032-0862.2004.00959.x es_ES
dc.description.references Vossen, R. H. A. M., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019 es_ES
dc.description.references Yang, L., Koo, D.-H., Li, D., Zhang, T., Jiang, J., Luan, F., … Weng, Y. (2013). Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy inCucumis. The Plant Journal, 77(1), 16-30. doi:10.1111/tpj.12355 es_ES
dc.description.references Yang, X., Caro, M., Hutton, S. F., Scott, J. W., Guo, Y., Wang, X., … Du, Y. (2014). Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding. doi:10.1007/s11032-014-0072-9 es_ES
dc.description.references Zaidi, S. S.-A., Shafiq, M., Amin, I., Scheffler, B. E., Scheffler, J. A., Briddon, R. W., & Mansoor, S. (2016). Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan. PLOS ONE, 11(5), e0155520. doi:10.1371/journal.pone.0155520 es_ES
dc.description.references Zaidi, S. S., Shakir, S., Malik, H. J., Farooq, M., Amin, I., & Mansoor, S. (2017). First Report of Tomato leaf curl New Delhi virus on Calotropis procera, a Weed as Potential Reservoir Begomovirus Host in Pakistan. Plant Disease, 101(6), 1071. doi:10.1094/pdis-10-16-1539-pdn es_ES
dc.description.references Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.1457 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem