- -

Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients

Mostrar el registro completo del ítem

Cano, J.; Zorio, E.; Mazzanti, A.; Arnau, MÁ.; Trenor Gomis, BA.; Priori, SG.; Saiz Rodríguez, FJ.... (2020). Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients. Frontiers in Pharmacology. 11:1-19. https://doi.org/10.3389/fphar.2020.580481

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167982

Ficheros en el ítem

Metadatos del ítem

Título: Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients
Autor: Cano, Jordi Zorio, Esther Mazzanti, Andrea Arnau, Miguel Ángel Trenor Gomis, Beatriz Ana Priori, Silvia G. Saiz Rodríguez, Francisco Javier Romero Pérez, Lucia
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] The prolongation of the QT interval represents the main feature of the long QT syndrome (LQTS), a life-threatening genetic disease. The heterozygous SCN5A V411M mutation of the human sodium channel leads to a LQTS ...[+]
Palabras clave: Long QT Syndrome , Flecainide , Ranolazine , In-silico model , Sodium current channelopathy , V411M
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Pharmacology. (eissn: 1663-9812 )
DOI: 10.3389/fphar.2020.580481
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fphar.2020.580481
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2015-69125-R/ES/SIMULACION COMPUTACIONAL PARA LA PREDICCION PERSONALIZADA DE LOS EFECTOS DE LOS FARMACOS SOBRE LA ACTIVIDAD CARDIACA/
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/ISCIII//PT17%2F0015%2F0043/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/
Agradecimientos:
This work was partially supported by Fondo Europeo de Desarrollo Regional (FEDER, "Union Europea, Una forma de hacer Europa") with the Ministerio de Economia y Competitividad (DPI2015-69125-R), Direccion General de Politica ...[+]
Tipo: Artículo

References

Abdelsayed, M., Peters, C. H., & Ruben, P. C. (2015). Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants. The Journal of Physiology, 593(18), 4201-4223. doi:10.1113/jp270139

Ackerman, M. J., Priori, S. G., Willems, S., Berul, C., Brugada, R., Calkins, H., … Zipes, D. P. (2011). HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies. Heart Rhythm, 8(8), 1308-1339. doi:10.1016/j.hrthm.2011.05.020

Aliot, E., Capucci, A., Crijns, H. J., Goette, A., & Tamargo, J. (2010). Twenty-five years in the making: flecainide is safe and effective for the management of atrial fibrillation. Europace, 13(2), 161-173. doi:10.1093/europace/euq382 [+]
Abdelsayed, M., Peters, C. H., & Ruben, P. C. (2015). Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants. The Journal of Physiology, 593(18), 4201-4223. doi:10.1113/jp270139

Ackerman, M. J., Priori, S. G., Willems, S., Berul, C., Brugada, R., Calkins, H., … Zipes, D. P. (2011). HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies. Heart Rhythm, 8(8), 1308-1339. doi:10.1016/j.hrthm.2011.05.020

Aliot, E., Capucci, A., Crijns, H. J., Goette, A., & Tamargo, J. (2010). Twenty-five years in the making: flecainide is safe and effective for the management of atrial fibrillation. Europace, 13(2), 161-173. doi:10.1093/europace/euq382

Andrikopoulos, G. K. (2015). Flecainide: Current status and perspectives in arrhythmia management. World Journal of Cardiology, 7(2), 76. doi:10.4330/wjc.v7.i2.76

Belardinelli, L., Liu, G., Smith-Maxwell, C., Wang, W.-Q., El-Bizri, N., Hirakawa, R., … Shryock, J. C. (2012). A Novel, Potent, and Selective Inhibitor of Cardiac Late Sodium Current Suppresses Experimental Arrhythmias. Journal of Pharmacology and Experimental Therapeutics, 344(1), 23-32. doi:10.1124/jpet.112.198887

Bengel, P., Ahmad, S., & Sossalla, S. (2017). Inhibition of Late Sodium Current as an Innovative Antiarrhythmic Strategy. Current Heart Failure Reports, 14(3), 179-186. doi:10.1007/s11897-017-0333-0

Blich, M., Khoury, A., Suleiman, M., Lorber, A., Gepstein, L., & Boulous, M. (2019). Specific Therapy Based on the Genotype in a Malignant Form of Long QT3, Carrying the V411M Mutation. International Heart Journal, 60(4), 979-982. doi:10.1536/ihj.18-705

Bohnen, M. S., Peng, G., Robey, S. H., Terrenoire, C., Iyer, V., Sampson, K. J., & Kass, R. S. (2017). Molecular Pathophysiology of Congenital Long QT Syndrome. Physiological Reviews, 97(1), 89-134. doi:10.1152/physrev.00008.2016

Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher, D. J., & Rodriguez, B. (2013). Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proceedings of the National Academy of Sciences, 110(23), E2098-E2105. doi:10.1073/pnas.1304382110

Caballero, R., Dolz-Gaiton, P., Gomez, R., Amoros, I., Barana, A., Gonzalez de la Fuente, M., … Delpon, E. (2010). Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Proceedings of the National Academy of Sciences, 107(35), 15631-15636. doi:10.1073/pnas.1004021107

Carrasco, J. I., Izquierdo, I., Medina, P., Arnau, M. Á., Salvador, A., & Zorio, E. (2012). Flecainide, a Therapeutic Option in a Patient With Long QT Syndrome Type 3 Caused by the Heterozygous V411M Mutation in the SCN5A Gene. Revista Española de Cardiología (English Edition), 65(11), 1058-1059. doi:10.1016/j.rec.2012.03.013

Chadda, K. R., Jeevaratnam, K., Lei, M., & Huang, C. L.-H. (2017). Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes. Pflügers Archiv - European Journal of Physiology, 469(5-6), 629-641. doi:10.1007/s00424-017-1959-1

Chang, K. C., Dutta, S., Mirams, G. R., Beattie, K. A., Sheng, J., Tran, P. N., … Li, Z. (2017). Uncertainty Quantification Reveals the Importance of Data Variability and Experimental Design Considerations for in Silico Proarrhythmia Risk Assessment. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00917

Chorin, E., Hu, D., Antzelevitch, C., Hochstadt, A., Belardinelli, L., Zeltser, D., … Viskin, S. (2016). Ranolazine for Congenital Long-QT Syndrome Type III. Circulation: Arrhythmia and Electrophysiology, 9(10). doi:10.1161/circep.116.004370

Colquhoun, D., Dowsland, K. A., Beato, M., & Plested, A. J. R. (2004). How to Impose Microscopic Reversibility in Complex Reaction Mechanisms. Biophysical Journal, 86(6), 3510-3518. doi:10.1529/biophysj.103.038679

Crumb, W. J., Vicente, J., Johannesen, L., & Strauss, D. G. (2016). An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. Journal of Pharmacological and Toxicological Methods, 81, 251-262. doi:10.1016/j.vascn.2016.03.009

Dutta, S., Chang, K. C., Beattie, K. A., Sheng, J., Tran, P. N., Wu, W. W., … Li, Z. (2017). Optimization of an In silico Cardiac Cell Model for Proarrhythmia Risk Assessment. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00616

Elkins, R. C., Davies, M. R., Brough, S. J., Gavaghan, D. J., Cui, Y., Abi-Gerges, N., & Mirams, G. R. (2013). Variability in high-throughput ion-channel screening data and consequences for cardiac safety assessment. Journal of Pharmacological and Toxicological Methods, 68(1), 112-122. doi:10.1016/j.vascn.2013.04.007

Ficker, E., Jarolimek, W., Kiehn, J., Baumann, A., & Brown, A. M. (1998). Molecular Determinants of Dofetilide Block of HERG K + Channels. Circulation Research, 82(3), 386-395. doi:10.1161/01.res.82.3.386

Grandi, E., Pasqualini, F. S., & Bers, D. M. (2010). A novel computational model of the human ventricular action potential and Ca transient. Journal of Molecular and Cellular Cardiology, 48(1), 112-121. doi:10.1016/j.yjmcc.2009.09.019

Guo, D., & Jenkinson, S. (2019). Simultaneous assessment of compound activity on cardiac Nav1.5 peak and late currents in an automated patch clamp platform. Journal of Pharmacological and Toxicological Methods, 99, 106575. doi:10.1016/j.vascn.2019.04.001

Hegyi, B., Bányász, T., Izu, L. T., Belardinelli, L., Bers, D. M., & Chen-Izu, Y. (2018). β-adrenergic regulation of late Na+ current during cardiac action potential is mediated by both PKA and CaMKII. Journal of Molecular and Cellular Cardiology, 123, 168-179. doi:10.1016/j.yjmcc.2018.09.006

Horne, A. J., Eldstrom, J., Sanatani, S., & Fedida, D. (2011). A novel mechanism for LQT3 with 2:1 block: A pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm, 8(5), 770-777. doi:10.1016/j.hrthm.2010.12.041

Horvath, B., Banyasz, T., Jian, Z., Hegyi, B., Kistamas, K., Nanasi, P. P., … Chen-Izu, Y. (2013). Dynamics of the late Na+ current during cardiac action potential and its contribution to afterdepolarizations. Journal of Molecular and Cellular Cardiology, 64, 59-68. doi:10.1016/j.yjmcc.2013.08.010

Horváth, B., Hézső, T., Szentandrássy, N., Kistamás, K., Árpádffy-Lovas, T., Varga, R., … Nánási, P. P. (2020). Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 139, 14-23. doi:10.1016/j.yjmcc.2019.12.015

KAUFMAN, E. S. (2008). Use of Ranolazine in Long-QT Syndrome Type 3. Journal of Cardiovascular Electrophysiology, 19(12), 1294-1295. doi:10.1111/j.1540-8167.2008.01255.x

Lancaster, M. C., & Sobie, E. (2016). Improved Prediction of Drug-Induced Torsades de Pointes Through Simulations of Dynamics and Machine Learning Algorithms. Clinical Pharmacology & Therapeutics, 100(4), 371-379. doi:10.1002/cpt.367

Li, Z., Dutta, S., Sheng, J., Tran, P. N., Wu, W., Chang, K., … Colatsky, T. (2017). Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel–Drug Binding Kinetics and Multichannel Pharmacology. Circulation: Arrhythmia and Electrophysiology, 10(2). doi:10.1161/circep.116.004628

Liu, H., Atkins, J., & Kass, R. S. (2003). Common Molecular Determinants of Flecainide and Lidocaine Block of Heart Na+ Channels. Journal of General Physiology, 121(3), 199-214. doi:10.1085/jgp.20028723

Liu, H., Tateyama, M., Clancy, C. E., Abriel, H., & Kass, R. S. (2002). Channel Openings Are Necessary but not Sufficient for Use-dependent Block of Cardiac Na+ Channels by Flecainide. Journal of General Physiology, 120(1), 39-51. doi:10.1085/jgp.20028558

Lu, H. R., Vlaminckx, E., & Gallacher, D. J. (2008). Choice of cardiac tissue in vitro plays an important role in assessing the risk of drug-induced cardiac arrhythmias in human: Beyond QT prolongation. Journal of Pharmacological and Toxicological Methods, 57(1), 1-8. doi:10.1016/j.vascn.2007.06.005

Makielski, J. C. (2016). Late sodium current: A mechanism for angina, heart failure, and arrhythmia. Trends in Cardiovascular Medicine, 26(2), 115-122. doi:10.1016/j.tcm.2015.05.006

Makita, N., Behr, E., Shimizu, W., Horie, M., Sunami, A., Crotti, L., … Roden, D. M. (2008). The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. Journal of Clinical Investigation. doi:10.1172/jci34057

Maltsev, V. A., Sabbah, H. N., Higgins, R. S. D., Silverman, N., Lesch, M., & Undrovinas, A. I. (1998). Novel, Ultraslow Inactivating Sodium Current in Human Ventricular Cardiomyocytes. Circulation, 98(23), 2545-2552. doi:10.1161/01.cir.98.23.2545

Moreno, J. D., & Clancy, C. E. (2012). Pathophysiology of the cardiac late Na current and its potential as a drug target. Journal of Molecular and Cellular Cardiology, 52(3), 608-619. doi:10.1016/j.yjmcc.2011.12.003

Moreno, J. D., Lewis, T. J., & Clancy, C. E. (2016). Parameterization for In-Silico Modeling of Ion Channel Interactions with Drugs. PLOS ONE, 11(3), e0150761. doi:10.1371/journal.pone.0150761

Moreno, J. D., Yang, P.-C., Bankston, J. R., Grandi, E., Bers, D. M., Kass, R. S., & Clancy, C. E. (2013). Ranolazine for Congenital and Acquired Late I Na -Linked Arrhythmias. Circulation Research, 113(7). doi:10.1161/circresaha.113.301971

Moreno, J. D., Zhu, Z. I., Yang, P.-C., Bankston, J. R., Jeng, M.-T., Kang, C., … Clancy, C. E. (2011). A Computational Model to Predict the Effects of Class I Anti-Arrhythmic Drugs on Ventricular Rhythms. Science Translational Medicine, 3(98). doi:10.1126/scitranslmed.3002588

Moss, A. J., Windle, J. R., Hall, W. J., Zareba, W., Robinson, J. L., McNitt, S., … Manalan, A. S. (2005). Safety and Efficacy of Flecainide in Subjects with Long QT-3 Syndrome (DeltaKPQ Mutation): A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Annals of Noninvasive Electrocardiology, 10(s4), 59-66. doi:10.1111/j.1542-474x.2005.00077.x

MOSS, A. J., ZAREBA, W., SCHWARZ, K. Q., ROSERO, S., MCNITT, S., & ROBINSON, J. L. (2008). Ranolazine Shortens Repolarization in Patients with Sustained Inward Sodium Current Due to Type-3 Long-QT Syndrome. Journal of Cardiovascular Electrophysiology, 19(12), 1289-1293. doi:10.1111/j.1540-8167.2008.01246.x

O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061

Paul, A. A., Witchel, H. J., & Hancox, J. C. (2002). Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. British Journal of Pharmacology, 136(5), 717-729. doi:10.1038/sj.bjp.0704784

Penniman, J. R., Kim, D. C., Salata, J. J., & Imredy, J. P. (2010). Assessing use-dependent inhibition of the cardiac Na± current (INa) in the PatchXpress automated patch clamp. Journal of Pharmacological and Toxicological Methods, 62(2), 107-118. doi:10.1016/j.vascn.2010.06.007

Postema, P. G., De Jong, J. S. S. G., Van der Bilt, I. A. C., & Wilde, A. A. M. (2008). Accurate electrocardiographic assessment of the QT interval: Teach the tangent. Heart Rhythm, 5(7), 1015-1018. doi:10.1016/j.hrthm.2008.03.037

Priori, S. G., Blomström-Lundqvist, C., Mazzanti, A., Blom, N., Borggrefe, M., Camm, J., … Van Veldhuisen, D. J. (2015). 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. European Heart Journal, 36(41), 2793-2867. doi:10.1093/eurheartj/ehv316

Rivolta, I., Abriel, H., Tateyama, M., Liu, H., Memmi, M., Vardas, P., … Kass, R. S. (2001). Inherited Brugada and Long QT-3 Syndrome Mutations of a Single Residue of the Cardiac Sodium Channel Confer Distinct Channel and Clinical Phenotypes. Journal of Biological Chemistry, 276(33), 30623-30630. doi:10.1074/jbc.m104471200

Romero, L., Cano, J., Gomis-Tena, J., Trenor, B., Sanz, F., Pastor, M., & Saiz, J. (2018). In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk. Journal of Chemical Information and Modeling, 58(4), 867-878. doi:10.1021/acs.jcim.7b00440

Romero, L., Trenor, B., Yang, P.-C., Saiz, J., & Clancy, C. E. (2015). In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. Journal of Molecular and Cellular Cardiology, 87, 271-282. doi:10.1016/j.yjmcc.2015.08.015

Rudy, Y., & Silva, J. R. (2006). Computational biology in the study of cardiac ion channels and cell electrophysiology. Quarterly Reviews of Biophysics, 39(1), 57-116. doi:10.1017/s0033583506004227

Saint, D. A. (2008). The cardiac persistent sodium current: an appealing therapeutic target? British Journal of Pharmacology, 153(6), 1133-1142. doi:10.1038/sj.bjp.0707492

Smallwood, J., Robertson, D., & Steinberg, M. (1989). Electrophysiological effects of flecainide enantiomers in canine Purkinje fibres. Naunyn-Schmiedeberg’s Archives of Pharmacology, 339(6). doi:10.1007/bf00168654

Sobie, E. A. (2009). Parameter Sensitivity Analysis in Electrophysiological Models Using Multivariable Regression. Biophysical Journal, 96(4), 1264-1274. doi:10.1016/j.bpj.2008.10.056

Soltis, A. R., & Saucerman, J. J. (2010). Synergy between CaMKII Substrates and β-Adrenergic Signaling in Regulation of Cardiac Myocyte Ca2+ Handling. Biophysical Journal, 99(7), 2038-2047. doi:10.1016/j.bpj.2010.08.016

Trenor, B., Cardona, K., Gomez, J. F., Rajamani, S., Ferrero, J. M., Belardinelli, L., & Saiz, J. (2012). Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure. PLoS ONE, 7(3), e32659. doi:10.1371/journal.pone.0032659

Yang, P.-C., DeMarco, K. R., Aghasafari, P., Jeng, M.-T., Dawson, J. R. D., Bekker, S., … Clancy, C. E. (2020). A Computational Pipeline to Predict Cardiotoxicity. Circulation Research, 126(8), 947-964. doi:10.1161/circresaha.119.316404

Yang, P.-C., El-Bizri, N., Romero, L., Giles, W. R., Rajamani, S., Belardinelli, L., & Clancy, C. E. (2016). A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current. Journal of Molecular and Cellular Cardiology, 99, 151-161. doi:10.1016/j.yjmcc.2016.08.011

Yang, P., Moreno, J. D., Miyake, C. Y., Vaughn‐Behrens, S. B., Jeng, M., Grandi, E., … Clancy, C. E. (2015). In silico prediction of drug therapy in catecholaminergic polymorphic ventricular tachycardia. The Journal of Physiology, 594(3), 567-593. doi:10.1113/jp271282

Zhu, W., Mazzanti, A., Voelker, T. L., Hou, P., Moreno, J. D., Angsutararux, P., … Silva, J. R. (2019). Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation. Circulation Research, 124(4), 539-552. doi:10.1161/circresaha.118.314050

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem