- -

Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cano, Jordi es_ES
dc.contributor.author Zorio, Esther es_ES
dc.contributor.author Mazzanti, Andrea es_ES
dc.contributor.author Arnau, Miguel Ángel es_ES
dc.contributor.author Trenor Gomis, Beatriz Ana es_ES
dc.contributor.author Priori, Silvia G. es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Romero Pérez, Lucia es_ES
dc.date.accessioned 2021-06-15T03:31:31Z
dc.date.available 2021-06-15T03:31:31Z
dc.date.issued 2020-12-17 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167982
dc.description.abstract [EN] The prolongation of the QT interval represents the main feature of the long QT syndrome (LQTS), a life-threatening genetic disease. The heterozygous SCN5A V411M mutation of the human sodium channel leads to a LQTS type 3 with severe proarrhythmic effects due to an increase in the late component of the sodium current (INaL). The two sodium blockers flecainide and ranolazine are equally recommended by the current 2015 ESC guidelines to treat patients with LQTS type 3 and persistently prolonged QT intervals. However, awareness of pro-arrhythmic effects of flecainide in LQTS type 3 patients arose upon the study of the SCN5A E1784K mutation. Regarding SCN5A V411M individuals, flecainide showed good results albeit in a reduced number of patients and no evidence supporting the use of ranolazine has ever been released. Therefore, we ought to compare the effect of ranolazine and flecainide in a SCN5A V411M model using an in-silico modeling and simulation approach. We collected clinical data of four patients. Then, we fitted four Markovian models of the human sodium current (INa) to experimental and clinical data. Two of them correspond to the wild type and the heterozygous SCN5A V411M scenarios, and the other two mimic the effects of flecainide and ranolazine on INa. Next, we inserted them into three isolated cell action potential (AP) models for endocardial, midmyocardial and epicardial cells and in a one-dimensional tissue model. The SCN5A V411M mutation produced a 15.9% APD90 prolongation in the isolated endocardial cell model, which corresponded to a 14.3% of the QT interval prolongation in a one-dimensional strand model, in keeping with clinical observations. Although with different underlying mechanisms, flecainide and ranolazine partially countered this prolongation at the isolated endocardial model by reducing the APD90 by 8.7 and 4.3%, and the QT interval by 7.2 and 3.2%, respectively. While flecainide specifically targeted the mutation-induced increase in peak INaL, ranolazine reduced it during the entire AP. Our simulations also suggest that ranolazine could prevent early afterdepolarizations triggered by the SCN5A V411M mutation during bradycardia, as flecainide. We conclude that ranolazine could be used to treat SCN5A V411M patients, specifically when flecainide is contraindicated. es_ES
dc.description.sponsorship This work was partially supported by Fondo Europeo de Desarrollo Regional (FEDER, "Union Europea, Una forma de hacer Europa") with the Ministerio de Economia y Competitividad (DPI2015-69125-R), Direccion General de Politica Cientifica de la Generalitat Valenciana (PROMETEO/2020/043) and Instituto de Salud Carlos III (La Fe Biobank PT17/0015/0043), as well as by Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia with Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), and by Memorial Nacho Barbera. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Pharmacology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Long QT Syndrome es_ES
dc.subject Flecainide es_ES
dc.subject Ranolazine es_ES
dc.subject In-silico model es_ES
dc.subject Sodium current channelopathy es_ES
dc.subject V411M es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphar.2020.580481 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-69125-R/ES/SIMULACION COMPUTACIONAL PARA LA PREDICCION PERSONALIZADA DE LOS EFECTOS DE LOS FARMACOS SOBRE LA ACTIVIDAD CARDIACA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PT17%2F0015%2F0043/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Cano, J.; Zorio, E.; Mazzanti, A.; Arnau, MÁ.; Trenor Gomis, BA.; Priori, SG.; Saiz Rodríguez, FJ.... (2020). Ranolazine as an Alternative Therapy to Flecainide for SCN5A V411M Long QT Syndrome Type 3 Patients. Frontiers in Pharmacology. 11:1-19. https://doi.org/10.3389/fphar.2020.580481 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphar.2020.580481 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 1663-9812 es_ES
dc.identifier.pmid 33519442 es_ES
dc.identifier.pmcid PMC7845660 es_ES
dc.relation.pasarela S\434640 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abdelsayed, M., Peters, C. H., & Ruben, P. C. (2015). Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants. The Journal of Physiology, 593(18), 4201-4223. doi:10.1113/jp270139 es_ES
dc.description.references Ackerman, M. J., Priori, S. G., Willems, S., Berul, C., Brugada, R., Calkins, H., … Zipes, D. P. (2011). HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies. Heart Rhythm, 8(8), 1308-1339. doi:10.1016/j.hrthm.2011.05.020 es_ES
dc.description.references Aliot, E., Capucci, A., Crijns, H. J., Goette, A., & Tamargo, J. (2010). Twenty-five years in the making: flecainide is safe and effective for the management of atrial fibrillation. Europace, 13(2), 161-173. doi:10.1093/europace/euq382 es_ES
dc.description.references Andrikopoulos, G. K. (2015). Flecainide: Current status and perspectives in arrhythmia management. World Journal of Cardiology, 7(2), 76. doi:10.4330/wjc.v7.i2.76 es_ES
dc.description.references Belardinelli, L., Liu, G., Smith-Maxwell, C., Wang, W.-Q., El-Bizri, N., Hirakawa, R., … Shryock, J. C. (2012). A Novel, Potent, and Selective Inhibitor of Cardiac Late Sodium Current Suppresses Experimental Arrhythmias. Journal of Pharmacology and Experimental Therapeutics, 344(1), 23-32. doi:10.1124/jpet.112.198887 es_ES
dc.description.references Bengel, P., Ahmad, S., & Sossalla, S. (2017). Inhibition of Late Sodium Current as an Innovative Antiarrhythmic Strategy. Current Heart Failure Reports, 14(3), 179-186. doi:10.1007/s11897-017-0333-0 es_ES
dc.description.references Blich, M., Khoury, A., Suleiman, M., Lorber, A., Gepstein, L., & Boulous, M. (2019). Specific Therapy Based on the Genotype in a Malignant Form of Long QT3, Carrying the V411M Mutation. International Heart Journal, 60(4), 979-982. doi:10.1536/ihj.18-705 es_ES
dc.description.references Bohnen, M. S., Peng, G., Robey, S. H., Terrenoire, C., Iyer, V., Sampson, K. J., & Kass, R. S. (2017). Molecular Pathophysiology of Congenital Long QT Syndrome. Physiological Reviews, 97(1), 89-134. doi:10.1152/physrev.00008.2016 es_ES
dc.description.references Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher, D. J., & Rodriguez, B. (2013). Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proceedings of the National Academy of Sciences, 110(23), E2098-E2105. doi:10.1073/pnas.1304382110 es_ES
dc.description.references Caballero, R., Dolz-Gaiton, P., Gomez, R., Amoros, I., Barana, A., Gonzalez de la Fuente, M., … Delpon, E. (2010). Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Proceedings of the National Academy of Sciences, 107(35), 15631-15636. doi:10.1073/pnas.1004021107 es_ES
dc.description.references Carrasco, J. I., Izquierdo, I., Medina, P., Arnau, M. Á., Salvador, A., & Zorio, E. (2012). Flecainide, a Therapeutic Option in a Patient With Long QT Syndrome Type 3 Caused by the Heterozygous V411M Mutation in the SCN5A Gene. Revista Española de Cardiología (English Edition), 65(11), 1058-1059. doi:10.1016/j.rec.2012.03.013 es_ES
dc.description.references Chadda, K. R., Jeevaratnam, K., Lei, M., & Huang, C. L.-H. (2017). Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes. Pflügers Archiv - European Journal of Physiology, 469(5-6), 629-641. doi:10.1007/s00424-017-1959-1 es_ES
dc.description.references Chang, K. C., Dutta, S., Mirams, G. R., Beattie, K. A., Sheng, J., Tran, P. N., … Li, Z. (2017). Uncertainty Quantification Reveals the Importance of Data Variability and Experimental Design Considerations for in Silico Proarrhythmia Risk Assessment. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00917 es_ES
dc.description.references Chorin, E., Hu, D., Antzelevitch, C., Hochstadt, A., Belardinelli, L., Zeltser, D., … Viskin, S. (2016). Ranolazine for Congenital Long-QT Syndrome Type III. Circulation: Arrhythmia and Electrophysiology, 9(10). doi:10.1161/circep.116.004370 es_ES
dc.description.references Colquhoun, D., Dowsland, K. A., Beato, M., & Plested, A. J. R. (2004). How to Impose Microscopic Reversibility in Complex Reaction Mechanisms. Biophysical Journal, 86(6), 3510-3518. doi:10.1529/biophysj.103.038679 es_ES
dc.description.references Crumb, W. J., Vicente, J., Johannesen, L., & Strauss, D. G. (2016). An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. Journal of Pharmacological and Toxicological Methods, 81, 251-262. doi:10.1016/j.vascn.2016.03.009 es_ES
dc.description.references Dutta, S., Chang, K. C., Beattie, K. A., Sheng, J., Tran, P. N., Wu, W. W., … Li, Z. (2017). Optimization of an In silico Cardiac Cell Model for Proarrhythmia Risk Assessment. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00616 es_ES
dc.description.references Elkins, R. C., Davies, M. R., Brough, S. J., Gavaghan, D. J., Cui, Y., Abi-Gerges, N., & Mirams, G. R. (2013). Variability in high-throughput ion-channel screening data and consequences for cardiac safety assessment. Journal of Pharmacological and Toxicological Methods, 68(1), 112-122. doi:10.1016/j.vascn.2013.04.007 es_ES
dc.description.references Ficker, E., Jarolimek, W., Kiehn, J., Baumann, A., & Brown, A. M. (1998). Molecular Determinants of Dofetilide Block of HERG K + Channels. Circulation Research, 82(3), 386-395. doi:10.1161/01.res.82.3.386 es_ES
dc.description.references Grandi, E., Pasqualini, F. S., & Bers, D. M. (2010). A novel computational model of the human ventricular action potential and Ca transient. Journal of Molecular and Cellular Cardiology, 48(1), 112-121. doi:10.1016/j.yjmcc.2009.09.019 es_ES
dc.description.references Guo, D., & Jenkinson, S. (2019). Simultaneous assessment of compound activity on cardiac Nav1.5 peak and late currents in an automated patch clamp platform. Journal of Pharmacological and Toxicological Methods, 99, 106575. doi:10.1016/j.vascn.2019.04.001 es_ES
dc.description.references Hegyi, B., Bányász, T., Izu, L. T., Belardinelli, L., Bers, D. M., & Chen-Izu, Y. (2018). β-adrenergic regulation of late Na+ current during cardiac action potential is mediated by both PKA and CaMKII. Journal of Molecular and Cellular Cardiology, 123, 168-179. doi:10.1016/j.yjmcc.2018.09.006 es_ES
dc.description.references Horne, A. J., Eldstrom, J., Sanatani, S., & Fedida, D. (2011). A novel mechanism for LQT3 with 2:1 block: A pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm, 8(5), 770-777. doi:10.1016/j.hrthm.2010.12.041 es_ES
dc.description.references Horvath, B., Banyasz, T., Jian, Z., Hegyi, B., Kistamas, K., Nanasi, P. P., … Chen-Izu, Y. (2013). Dynamics of the late Na+ current during cardiac action potential and its contribution to afterdepolarizations. Journal of Molecular and Cellular Cardiology, 64, 59-68. doi:10.1016/j.yjmcc.2013.08.010 es_ES
dc.description.references Horváth, B., Hézső, T., Szentandrássy, N., Kistamás, K., Árpádffy-Lovas, T., Varga, R., … Nánási, P. P. (2020). Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 139, 14-23. doi:10.1016/j.yjmcc.2019.12.015 es_ES
dc.description.references KAUFMAN, E. S. (2008). Use of Ranolazine in Long-QT Syndrome Type 3. Journal of Cardiovascular Electrophysiology, 19(12), 1294-1295. doi:10.1111/j.1540-8167.2008.01255.x es_ES
dc.description.references Lancaster, M. C., & Sobie, E. (2016). Improved Prediction of Drug-Induced Torsades de Pointes Through Simulations of Dynamics and Machine Learning Algorithms. Clinical Pharmacology & Therapeutics, 100(4), 371-379. doi:10.1002/cpt.367 es_ES
dc.description.references Li, Z., Dutta, S., Sheng, J., Tran, P. N., Wu, W., Chang, K., … Colatsky, T. (2017). Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel–Drug Binding Kinetics and Multichannel Pharmacology. Circulation: Arrhythmia and Electrophysiology, 10(2). doi:10.1161/circep.116.004628 es_ES
dc.description.references Liu, H., Atkins, J., & Kass, R. S. (2003). Common Molecular Determinants of Flecainide and Lidocaine Block of Heart Na+ Channels. Journal of General Physiology, 121(3), 199-214. doi:10.1085/jgp.20028723 es_ES
dc.description.references Liu, H., Tateyama, M., Clancy, C. E., Abriel, H., & Kass, R. S. (2002). Channel Openings Are Necessary but not Sufficient for Use-dependent Block of Cardiac Na+ Channels by Flecainide. Journal of General Physiology, 120(1), 39-51. doi:10.1085/jgp.20028558 es_ES
dc.description.references Lu, H. R., Vlaminckx, E., & Gallacher, D. J. (2008). Choice of cardiac tissue in vitro plays an important role in assessing the risk of drug-induced cardiac arrhythmias in human: Beyond QT prolongation. Journal of Pharmacological and Toxicological Methods, 57(1), 1-8. doi:10.1016/j.vascn.2007.06.005 es_ES
dc.description.references Makielski, J. C. (2016). Late sodium current: A mechanism for angina, heart failure, and arrhythmia. Trends in Cardiovascular Medicine, 26(2), 115-122. doi:10.1016/j.tcm.2015.05.006 es_ES
dc.description.references Makita, N., Behr, E., Shimizu, W., Horie, M., Sunami, A., Crotti, L., … Roden, D. M. (2008). The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. Journal of Clinical Investigation. doi:10.1172/jci34057 es_ES
dc.description.references Maltsev, V. A., Sabbah, H. N., Higgins, R. S. D., Silverman, N., Lesch, M., & Undrovinas, A. I. (1998). Novel, Ultraslow Inactivating Sodium Current in Human Ventricular Cardiomyocytes. Circulation, 98(23), 2545-2552. doi:10.1161/01.cir.98.23.2545 es_ES
dc.description.references Moreno, J. D., & Clancy, C. E. (2012). Pathophysiology of the cardiac late Na current and its potential as a drug target. Journal of Molecular and Cellular Cardiology, 52(3), 608-619. doi:10.1016/j.yjmcc.2011.12.003 es_ES
dc.description.references Moreno, J. D., Lewis, T. J., & Clancy, C. E. (2016). Parameterization for In-Silico Modeling of Ion Channel Interactions with Drugs. PLOS ONE, 11(3), e0150761. doi:10.1371/journal.pone.0150761 es_ES
dc.description.references Moreno, J. D., Yang, P.-C., Bankston, J. R., Grandi, E., Bers, D. M., Kass, R. S., & Clancy, C. E. (2013). Ranolazine for Congenital and Acquired Late I Na -Linked Arrhythmias. Circulation Research, 113(7). doi:10.1161/circresaha.113.301971 es_ES
dc.description.references Moreno, J. D., Zhu, Z. I., Yang, P.-C., Bankston, J. R., Jeng, M.-T., Kang, C., … Clancy, C. E. (2011). A Computational Model to Predict the Effects of Class I Anti-Arrhythmic Drugs on Ventricular Rhythms. Science Translational Medicine, 3(98). doi:10.1126/scitranslmed.3002588 es_ES
dc.description.references Moss, A. J., Windle, J. R., Hall, W. J., Zareba, W., Robinson, J. L., McNitt, S., … Manalan, A. S. (2005). Safety and Efficacy of Flecainide in Subjects with Long QT-3 Syndrome (DeltaKPQ Mutation): A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Annals of Noninvasive Electrocardiology, 10(s4), 59-66. doi:10.1111/j.1542-474x.2005.00077.x es_ES
dc.description.references MOSS, A. J., ZAREBA, W., SCHWARZ, K. Q., ROSERO, S., MCNITT, S., & ROBINSON, J. L. (2008). Ranolazine Shortens Repolarization in Patients with Sustained Inward Sodium Current Due to Type-3 Long-QT Syndrome. Journal of Cardiovascular Electrophysiology, 19(12), 1289-1293. doi:10.1111/j.1540-8167.2008.01246.x es_ES
dc.description.references O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061 es_ES
dc.description.references Paul, A. A., Witchel, H. J., & Hancox, J. C. (2002). Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. British Journal of Pharmacology, 136(5), 717-729. doi:10.1038/sj.bjp.0704784 es_ES
dc.description.references Penniman, J. R., Kim, D. C., Salata, J. J., & Imredy, J. P. (2010). Assessing use-dependent inhibition of the cardiac Na± current (INa) in the PatchXpress automated patch clamp. Journal of Pharmacological and Toxicological Methods, 62(2), 107-118. doi:10.1016/j.vascn.2010.06.007 es_ES
dc.description.references Postema, P. G., De Jong, J. S. S. G., Van der Bilt, I. A. C., & Wilde, A. A. M. (2008). Accurate electrocardiographic assessment of the QT interval: Teach the tangent. Heart Rhythm, 5(7), 1015-1018. doi:10.1016/j.hrthm.2008.03.037 es_ES
dc.description.references Priori, S. G., Blomström-Lundqvist, C., Mazzanti, A., Blom, N., Borggrefe, M., Camm, J., … Van Veldhuisen, D. J. (2015). 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. European Heart Journal, 36(41), 2793-2867. doi:10.1093/eurheartj/ehv316 es_ES
dc.description.references Rivolta, I., Abriel, H., Tateyama, M., Liu, H., Memmi, M., Vardas, P., … Kass, R. S. (2001). Inherited Brugada and Long QT-3 Syndrome Mutations of a Single Residue of the Cardiac Sodium Channel Confer Distinct Channel and Clinical Phenotypes. Journal of Biological Chemistry, 276(33), 30623-30630. doi:10.1074/jbc.m104471200 es_ES
dc.description.references Romero, L., Cano, J., Gomis-Tena, J., Trenor, B., Sanz, F., Pastor, M., & Saiz, J. (2018). In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk. Journal of Chemical Information and Modeling, 58(4), 867-878. doi:10.1021/acs.jcim.7b00440 es_ES
dc.description.references Romero, L., Trenor, B., Yang, P.-C., Saiz, J., & Clancy, C. E. (2015). In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. Journal of Molecular and Cellular Cardiology, 87, 271-282. doi:10.1016/j.yjmcc.2015.08.015 es_ES
dc.description.references Rudy, Y., & Silva, J. R. (2006). Computational biology in the study of cardiac ion channels and cell electrophysiology. Quarterly Reviews of Biophysics, 39(1), 57-116. doi:10.1017/s0033583506004227 es_ES
dc.description.references Saint, D. A. (2008). The cardiac persistent sodium current: an appealing therapeutic target? British Journal of Pharmacology, 153(6), 1133-1142. doi:10.1038/sj.bjp.0707492 es_ES
dc.description.references Smallwood, J., Robertson, D., & Steinberg, M. (1989). Electrophysiological effects of flecainide enantiomers in canine Purkinje fibres. Naunyn-Schmiedeberg’s Archives of Pharmacology, 339(6). doi:10.1007/bf00168654 es_ES
dc.description.references Sobie, E. A. (2009). Parameter Sensitivity Analysis in Electrophysiological Models Using Multivariable Regression. Biophysical Journal, 96(4), 1264-1274. doi:10.1016/j.bpj.2008.10.056 es_ES
dc.description.references Soltis, A. R., & Saucerman, J. J. (2010). Synergy between CaMKII Substrates and β-Adrenergic Signaling in Regulation of Cardiac Myocyte Ca2+ Handling. Biophysical Journal, 99(7), 2038-2047. doi:10.1016/j.bpj.2010.08.016 es_ES
dc.description.references Trenor, B., Cardona, K., Gomez, J. F., Rajamani, S., Ferrero, J. M., Belardinelli, L., & Saiz, J. (2012). Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure. PLoS ONE, 7(3), e32659. doi:10.1371/journal.pone.0032659 es_ES
dc.description.references Yang, P.-C., DeMarco, K. R., Aghasafari, P., Jeng, M.-T., Dawson, J. R. D., Bekker, S., … Clancy, C. E. (2020). A Computational Pipeline to Predict Cardiotoxicity. Circulation Research, 126(8), 947-964. doi:10.1161/circresaha.119.316404 es_ES
dc.description.references Yang, P.-C., El-Bizri, N., Romero, L., Giles, W. R., Rajamani, S., Belardinelli, L., & Clancy, C. E. (2016). A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current. Journal of Molecular and Cellular Cardiology, 99, 151-161. doi:10.1016/j.yjmcc.2016.08.011 es_ES
dc.description.references Yang, P., Moreno, J. D., Miyake, C. Y., Vaughn‐Behrens, S. B., Jeng, M., Grandi, E., … Clancy, C. E. (2015). In silico prediction of drug therapy in catecholaminergic polymorphic ventricular tachycardia. The Journal of Physiology, 594(3), 567-593. doi:10.1113/jp271282 es_ES
dc.description.references Zhu, W., Mazzanti, A., Voelker, T. L., Hou, P., Moreno, J. D., Angsutararux, P., … Silva, J. R. (2019). Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation. Circulation Research, 124(4), 539-552. doi:10.1161/circresaha.118.314050 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem