- -

Development of a Direct in vitro Plant Regeneration Protocol From Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Development of a Direct in vitro Plant Regeneration Protocol From Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants

Show full item record

Galán-Ávila, A.; García-Fortea, E.; Prohens Tomás, J.; Herraiz García, FJ. (2020). Development of a Direct in vitro Plant Regeneration Protocol From Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants. Frontiers in Plant Science. 11:1-15. https://doi.org/10.3389/fpls.2020.00645

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168035

Files in this item

Item Metadata

Title: Development of a Direct in vitro Plant Regeneration Protocol From Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants
Author: Galán-Ávila, Alberto García-Fortea, Edgar Prohens Tomás, Jaime Herraiz García, Francisco Javier
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] In vitro shoot regeneration can efficiently contribute to the improvement of recalcitrant Cannabis sativa L. We aimed at developing a highly efficient protocol for in vitro direct regeneration of C. sativa plants from ...[+]
Subjects: Cannabinoids , Hemp , Hypocotyl , Micropropagation , Polyploidization , Polysomaty , Shoot organogenesis
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2020.00645
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2020.00645
Type: Artículo

References

Adelberg, J. W., Rhodes, B. B., & Skorupska, H. T. (1993). GENERATING TETRAPLOID MELONS IN TISSUE CULTURE. Acta Horticulturae, (336), 373-380. doi:10.17660/actahortic.1993.336.49

Andre, C. M., Hausman, J.-F., & Guerriero, G. (2016). Cannabis sativa: The Plant of the Thousand and One Molecules. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00019

Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., … Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grownin vitro. The Plant Journal, 57(4), 626-644. doi:10.1111/j.1365-313x.2008.03715.x [+]
Adelberg, J. W., Rhodes, B. B., & Skorupska, H. T. (1993). GENERATING TETRAPLOID MELONS IN TISSUE CULTURE. Acta Horticulturae, (336), 373-380. doi:10.17660/actahortic.1993.336.49

Andre, C. M., Hausman, J.-F., & Guerriero, G. (2016). Cannabis sativa: The Plant of the Thousand and One Molecules. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00019

Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., … Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grownin vitro. The Plant Journal, 57(4), 626-644. doi:10.1111/j.1365-313x.2008.03715.x

Beck, E. H. (1996). Regulation of shoot/root ratio by cytokinins from roots inUrtica dioica: Opinion. Plant and Soil, 185(1), 1-12. doi:10.1007/bf02257560

Beeckman, T., & De Smet, I. (2014). Pericycle. Current Biology, 24(10), R378-R379. doi:10.1016/j.cub.2014.03.031

Behr, M., Legay, S., Žižková, E., Motyka, V., Dobrev, P. I., Hausman, J.-F., … Guerriero, G. (2016). Studying Secondary Growth and Bast Fiber Development: The Hemp Hypocotyl Peeks behind the Wall. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01733

Behr, M., Sergeant, K., Leclercq, C. C., Planchon, S., Guignard, C., Lenouvel, A., … Guerriero, G. (2018). Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biology, 18(1). doi:10.1186/s12870-017-1213-1

Breslavetz, L. (1932). Polyploide Mitosen bei Cannabis sativa L. II. Planta, 17(3), 644-649. doi:10.1007/bf01909774

Bubner, B., Gase, K., Berger, B., Link, D., & Baldwin, I. T. (2006). Occurrence of tetraploidy in Nicotiana attenuata plants after Agrobacterium-mediated transformation is genotype specific but independent of polysomaty of explant tissue. Plant Cell Reports, 25(7), 668-675. doi:10.1007/s00299-005-0111-4

Cascio, M. G., Pertwee, R. G., & Marini, P. (2017). The Pharmacology and Therapeutic Potential of Plant Cannabinoids. Cannabis sativa L. - Botany and Biotechnology, 207-225. doi:10.1007/978-3-319-54564-6_9

Chaohua, C., Gonggu, Z., Lining, Z., Chunsheng, G., Qing, T., Jianhua, C., … Jianguang, S. (2016). A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Industrial Crops and Products, 83, 61-65. doi:10.1016/j.indcrop.2015.12.035

Colijn-Hooymans, C. M., Hakkert, J. C., Jansen, J., & Custers, J. B. M. (1994). Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell, Tissue and Organ Culture, 39(3), 211-217. doi:10.1007/bf00035972

D’Amato, F. (1952). Polyploidy in the Differentiation and Function of Tissues and Cells in Plants. Caryologia, 4(3), 311-358. doi:10.1080/00087114.1952.10797544

D’Amato, F. (1964). Endopolyploidy as a Factor in Plant Tissue Development. Caryologia, 17(1), 41-52. doi:10.1080/00087114.1964.10796115

DETREZ, C., TETU, T., SANGWAN, R. S., & SANGWAN-NORREEL, B. S. (1988). Direct Organogenesis from Petiole and Thin Cell Layer Explants in Sugar Beet CulturedIn Vitro. Journal of Experimental Botany, 39(7), 917-926. doi:10.1093/jxb/39.7.917

Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241

Ervin, C. D. (1939). Polysomaty in Cucumis Melo. Proceedings of the National Academy of Sciences, 25(7), 335-338. doi:10.1073/pnas.25.7.335

Ervin, C. D. (1941). A STUDY OF POLYSOMATY IN CUCUMIS MELO. American Journal of Botany, 28(2), 113-124. doi:10.1002/j.1537-2197.1941.tb07950.x

Evans, D. A., & Bravo, J. E. (1986). Phenotypic and Genotypic Stability of Tissue Cultured Plants. Current Plant Science and Biotechnology in Agriculture, 73-94. doi:10.1007/978-94-009-4444-2_6

Ezura, H., Nishimiya, S., & Kasumi, M. (1993). Efficient regeneration of plants independent of exogeneous growth regulators in bell pepper (Capsicum annumm L.). Plant Cell Reports, 12(12). doi:10.1007/bf00233418

Feeney, M., & Punja, Z. K. (2003). Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cellular & Developmental Biology - Plant, 39(6), 578-585. doi:10.1079/ivp2003454

Feeney, M., & Punja, Z. K. (2014). Hemp (Cannabis sativa L.). Agrobacterium Protocols, 319-329. doi:10.1007/978-1-4939-1658-0_25

Feeney, M., & Punja, Z. K. (2017). The Role of Agrobacterium-Mediated and Other Gene-Transfer Technologies in Cannabis Research and Product Development. Cannabis sativa L. - Botany and Biotechnology, 343-363. doi:10.1007/978-3-319-54564-6_16

Cardoso-Furlan, F., Gavilan, N. H., Zichner-Zorz, A., Oliveira, L. S. de, Konzen, E. R., & Ebling-Brondani, G. (2018). Active chlorine and charcoal affect the in vitro culture of Bambusa vulgaris. Bosque (Valdivia), 39(1), 61-70. doi:10.4067/s0717-92002018000100061

García-Fortea, E., Lluch-Ruiz, A., Pineda-Chaza, B. J., García-Pérez, A., Bracho-Gil, J. P., Plazas, M., … Prohens, J. (2020). A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant Biology, 20(1). doi:10.1186/s12870-019-2215-y

Iannicelli, J., Guariniello, J., Tossi, V. E., Regalado, J. J., Di Ciaccio, L., van Baren, C. M., … Escandón, A. S. (2020). The «polyploid effect» in the breeding of aromatic and medicinal species. Scientia Horticulturae, 260, 108854. doi:10.1016/j.scienta.2019.108854

Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. doi:10.1080/10618600.1996.10474713

LaRue, C. D. (1933). Regeneration in Mutilated Seedlings. Proceedings of the National Academy of Sciences, 19(1), 53-63. doi:10.1073/pnas.19.1.53

Lata, H., Chandra, S., Khan, I., & ElSohly, M. A. (2008). Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cellular & Developmental Biology - Plant, 45(1), 12-19. doi:10.1007/s11627-008-9167-5

Lata, H., Chandra, S., Khan, I., & ElSohly, M. (2010). High Frequency Plant Regeneration from Leaf Derived Callus of HighΔ9-Tetrahydrocannabinol YieldingCannabis sativaL. Planta Medica, 76(14), 1629-1633. doi:10.1055/s-0030-1249773

Lata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2016). In Vitro Propagation of Cannabis sativa L. and Evaluation of Regenerated Plants for Genetic Fidelity and Cannabinoids Content for Quality Assurance. Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition, 275-288. doi:10.1007/978-1-4939-3332-7_19

Lata, H., Chandra, S., Techen, N., Khan, I. A., & ElSohly, M. A. (2016). In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(1), 18-26. doi:10.1016/j.jarmap.2015.12.001

Lata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2017). Micropropagation of Cannabis sativa L.—An Update. Cannabis sativa L. - Botany and Biotechnology, 285-297. doi:10.1007/978-3-319-54564-6_13

Ranalli, P. (1999). Advances in Hemp Research. doi:10.1201/9781498705820

Mansouri, H., & Bagheri, M. (2017). Induction of Polyploidy and Its Effect on Cannabis sativa L. Cannabis sativa L. - Botany and Biotechnology, 365-383. doi:10.1007/978-3-319-54564-6_17

Mhatre, M., Bapat, V. A., & Rao, P. S. (1985). Regeneration of plants from the culture of leaves and axillary buds in mulberry (Morus indica L.). Plant Cell Reports, 4(2), 78-80. doi:10.1007/bf00269211

Miller, R. H. (1959). MORPHOLOGY OF HUMULUS LUPULUS. II. SECONDARY GROWTH IN THE ROOT AND SEEDLING VASCULARIZATION. American Journal of Botany, 46(4), 269-277. doi:10.1002/j.1537-2197.1959.tb07012.x

Minocha, S. C. (1987). Plant Growth Regulators and Morphogenesis in Cell and Tissue Culture of Forest Trees. Forestry Sciences, 50-66. doi:10.1007/978-94-017-0994-1_4

Mishchenko, S., Mokher, J., Laiko, I., Burbulis, N., Kyrychenko, H., & Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės ūkio mokslai, 24(2). doi:10.6001/zemesukiomokslai.v24i2.3496

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x

Parsons, J. L., Martin, S. L., James, T., Golenia, G., Boudko, E. A., & Hepworth, S. R. (2019). Polyploidization for the Genetic Improvement of Cannabis sativa. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00476

Ramírez-Mosqueda, M. A., & Iglesias-Andreu, L. G. (2015). Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell, Tissue and Organ Culture (PCTOC), 123(3), 657-664. doi:10.1007/s11240-015-0868-2

RAMSAY, G., & KUMAR, A. (1990). Transformation ofVicia fabaCotyledon and Stem Tissues7Agrobacterium rhizogenes: Infectivity and Cytological Studies. Journal of Experimental Botany, 41(7), 841-847. doi:10.1093/jxb/41.7.841

Recupero, G. R., Russo, G., & Recupero, S. (2005). New Promising Citrus Triploid Hybrids Selected from Crosses between Monoembryonic Diploid Female and Tetraploid Male Parents. HortScience, 40(3), 516-520. doi:10.21273/hortsci.40.3.516

Ren, Y., Bang, H., Gould, J., Rathore, K. S., Patil, B. S., & Crosby, K. M. (2012). Shoot regeneration and ploidy variation in tissue culture of honeydew melon (Cucumis melo L. inodorus). In Vitro Cellular & Developmental Biology - Plant, 49(2), 223-229. doi:10.1007/s11627-012-9482-8

RICHEZ-DUMANOIS, C., BRAUT-BOUCHER, F., COSSON, L., & PARIS, M. (1986). Multiplication végétativein vitrodu chanvre (Cannabis sativa L.). Application à la conserva- tion des clones sélectionnés. Agronomie, 6(5), 487-495. doi:10.1051/agro:19860510

Sairam Reddy, P., Rodrigues, R., & Rajasekharan, R. (2001). Plant Cell, Tissue and Organ Culture, 66(3), 183-188. doi:10.1023/a:1010697813852

Silvarolla, M. B., Mazzafera, P., Lima, M. M. A. de, Medina Filho, H. P., & Fazuoli, L. C. (1999). Ploidy level and caffeine content in leaves of Coffea. Scientia Agricola, 56(3), 661-663. doi:10.1590/s0103-90161999000300021

Sliwinska, E., & Lukaszewska, E. (2005). Polysomaty in growing in vitro sugar-beet (Beta vulgaris L.) seedlings of different ploidy level. Plant Science, 168(4), 1067-1074. doi:10.1016/j.plantsci.2004.12.003

Smýkalová, I., Vrbová, M., Cvečková, M., Plačková, L., Žukauskaitė, A., Zatloukal, M., … Griga, M. (2019). The effects of novel synthetic cytokinin derivatives and endogenous cytokinins on the in vitro growth responses of hemp (Cannabis sativa L.) explants. Plant Cell, Tissue and Organ Culture (PCTOC), 139(2), 381-394. doi:10.1007/s11240-019-01693-5

Su, Y.-H., Liu, Y.-B., & Zhang, X.-S. (2011). Auxin–Cytokinin Interaction Regulates Meristem Development. Molecular Plant, 4(4), 616-625. doi:10.1093/mp/ssr007

Tanimoto, S., & Harada, H. (1984). Roles of Auxin and Cytokinin in Organogenesis in Torenia Stem Segments Cultured in vitro. Journal of Plant Physiology, 115(1), 11-18. doi:10.1016/s0176-1617(84)80046-2

Urits, I., Borchart, M., Hasegawa, M., Kochanski, J., Orhurhu, V., & Viswanath, O. (2019). An Update of Current Cannabis-Based Pharmaceuticals in Pain Medicine. Pain and Therapy, 8(1), 41-51. doi:10.1007/s40122-019-0114-4

Van den Bulk, R. W., Löffler, H. J. M., Lindhout, W. H., & Koornneef, M. (1990). Somaclonal variation in tomato: effect of explant source and a comparison with chemical mutagenesis. Theoretical and Applied Genetics, 80(6), 817-825. doi:10.1007/bf00224199

Van Hieu, P. (2019). Polyploid Gene Expression and Regulation in Polysomic Polyploids. American Journal of Plant Sciences, 10(08), 1409-1443. doi:10.4236/ajps.2019.108101

Vieira, L. M., Rocha, D. I., Taquetti, M. F., da Silva, L. C., de Campos, J. M. S., Viccini, L. F., & Otoni, W. C. (2014). In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): the influence of explant type, growth regulators, and incubation conditions. In Vitro Cellular & Developmental Biology - Plant, 50(6), 738-745. doi:10.1007/s11627-014-9650-0

Wahby, I., Caba, J. M., & Ligero, F. (2013). Agrobacteriuminfection of hemp (Cannabis sativaL.): establishment of hairy root cultures. Journal of Plant Interactions, 8(4), 312-320. doi:10.1080/17429145.2012.746399

Wahby, I., Caba, J. M., & Ligero, F. (2017). Hairy Root Culture as a Biotechnological Tool in C. sativa. Cannabis sativa L. - Botany and Biotechnology, 299-317. doi:10.1007/978-3-319-54564-6_14

Wielgus, K., Luwanska, A., Lassocinski, W., & Kaczmarek, Z. (2008). Estimation ofCannabis sativaL. Tissue Culture Conditions Essential for Callus Induction and Plant Regeneration. Journal of Natural Fibers, 5(3), 199-207. doi:10.1080/15440470801976045

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record