Mostrar el registro sencillo del ítem
dc.contributor.author | Galán-Ávila, Alberto | es_ES |
dc.contributor.author | García-Fortea, Edgar | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Herraiz García, Francisco Javier | es_ES |
dc.date.accessioned | 2021-06-16T03:30:40Z | |
dc.date.available | 2021-06-16T03:30:40Z | |
dc.date.issued | 2020-05-27 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168035 | |
dc.description.abstract | [EN] In vitro shoot regeneration can efficiently contribute to the improvement of recalcitrant Cannabis sativa L. We aimed at developing a highly efficient protocol for in vitro direct regeneration of C. sativa plants from different explants (cotyledon, hypocotyl, and true leaf) from seedlings of monoecious C. sativa short-day varieties Ferimon, Felina32, Fedora17, and USO31, together with dioecious neutral-day variety Finola. Ten regeneration media, including already published protocols, and self-designed combinations of plant growth regulators were tested. The developmental morphology since germination of seeds to the development of rooted plantlets was followed. Additionally, the ploidy level of explants and in vitro regenerants was analyzed. We concluded that hypocotyl is the best explant for in vitro direct regeneration of C. sativa plants with 49.45% of responding explants, while cotyledon and true leaf had a poor response with, respectively, 4.70 and 0.42% of explants developing plantlets. In terms of shoot regeneration, we found significant differences among the culture media evaluated and the varieties studied. Overall, the best regeneration media were ZEARIB 2.0 (mg/L) and ZEARIB 1.0 (mg/L) C NAA 0.02 (mg/L) with 66.67% of responding hypocotyls. Amazingly, hypocotyls cultured in medium without plant growth regulators showed an excellent response (61.54% of responding hypocotyls) and spontaneous rooting of regenerants (17.94%). In vitro regenerated plants were acclimatized just 6 weeks after culture initiation. The developmental morphology study suggests that regenerated shoots originate from pericycle cells adjacent to xylem poles. Polysomaty was detected in hypocotyls and cotyledons of all varieties studied, and diploid (>80%) and mixoploid (with diploid and tetraploid cells) plants were regenerated. Our protocol allows a high shoot organogenesis efficiency in different C. sativa varieties. The fact that a significant percentage of plants are mixoploid may provide an alternative way to develop polyploids in C. sativa. Our results show that direct in vitro regeneration may make a significant contribution to the development of improved C. sativa materials for medical applications. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cannabinoids | es_ES |
dc.subject | Hemp | es_ES |
dc.subject | Hypocotyl | es_ES |
dc.subject | Micropropagation | es_ES |
dc.subject | Polyploidization | es_ES |
dc.subject | Polysomaty | es_ES |
dc.subject | Shoot organogenesis | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Development of a Direct in vitro Plant Regeneration Protocol From Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2020.00645 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Galán-Ávila, A.; García-Fortea, E.; Prohens Tomás, J.; Herraiz García, FJ. (2020). Development of a Direct in vitro Plant Regeneration Protocol From Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants. Frontiers in Plant Science. 11:1-15. https://doi.org/10.3389/fpls.2020.00645 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2020.00645 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 32670304 | es_ES |
dc.identifier.pmcid | PMC7326123 | es_ES |
dc.relation.pasarela | S\413989 | es_ES |
dc.description.references | Adelberg, J. W., Rhodes, B. B., & Skorupska, H. T. (1993). GENERATING TETRAPLOID MELONS IN TISSUE CULTURE. Acta Horticulturae, (336), 373-380. doi:10.17660/actahortic.1993.336.49 | es_ES |
dc.description.references | Andre, C. M., Hausman, J.-F., & Guerriero, G. (2016). Cannabis sativa: The Plant of the Thousand and One Molecules. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00019 | es_ES |
dc.description.references | Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., … Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grownin vitro. The Plant Journal, 57(4), 626-644. doi:10.1111/j.1365-313x.2008.03715.x | es_ES |
dc.description.references | Beck, E. H. (1996). Regulation of shoot/root ratio by cytokinins from roots inUrtica dioica: Opinion. Plant and Soil, 185(1), 1-12. doi:10.1007/bf02257560 | es_ES |
dc.description.references | Beeckman, T., & De Smet, I. (2014). Pericycle. Current Biology, 24(10), R378-R379. doi:10.1016/j.cub.2014.03.031 | es_ES |
dc.description.references | Behr, M., Legay, S., Žižková, E., Motyka, V., Dobrev, P. I., Hausman, J.-F., … Guerriero, G. (2016). Studying Secondary Growth and Bast Fiber Development: The Hemp Hypocotyl Peeks behind the Wall. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01733 | es_ES |
dc.description.references | Behr, M., Sergeant, K., Leclercq, C. C., Planchon, S., Guignard, C., Lenouvel, A., … Guerriero, G. (2018). Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biology, 18(1). doi:10.1186/s12870-017-1213-1 | es_ES |
dc.description.references | Breslavetz, L. (1932). Polyploide Mitosen bei Cannabis sativa L. II. Planta, 17(3), 644-649. doi:10.1007/bf01909774 | es_ES |
dc.description.references | Bubner, B., Gase, K., Berger, B., Link, D., & Baldwin, I. T. (2006). Occurrence of tetraploidy in Nicotiana attenuata plants after Agrobacterium-mediated transformation is genotype specific but independent of polysomaty of explant tissue. Plant Cell Reports, 25(7), 668-675. doi:10.1007/s00299-005-0111-4 | es_ES |
dc.description.references | Cascio, M. G., Pertwee, R. G., & Marini, P. (2017). The Pharmacology and Therapeutic Potential of Plant Cannabinoids. Cannabis sativa L. - Botany and Biotechnology, 207-225. doi:10.1007/978-3-319-54564-6_9 | es_ES |
dc.description.references | Chaohua, C., Gonggu, Z., Lining, Z., Chunsheng, G., Qing, T., Jianhua, C., … Jianguang, S. (2016). A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Industrial Crops and Products, 83, 61-65. doi:10.1016/j.indcrop.2015.12.035 | es_ES |
dc.description.references | Colijn-Hooymans, C. M., Hakkert, J. C., Jansen, J., & Custers, J. B. M. (1994). Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell, Tissue and Organ Culture, 39(3), 211-217. doi:10.1007/bf00035972 | es_ES |
dc.description.references | D’Amato, F. (1952). Polyploidy in the Differentiation and Function of Tissues and Cells in Plants. Caryologia, 4(3), 311-358. doi:10.1080/00087114.1952.10797544 | es_ES |
dc.description.references | D’Amato, F. (1964). Endopolyploidy as a Factor in Plant Tissue Development. Caryologia, 17(1), 41-52. doi:10.1080/00087114.1964.10796115 | es_ES |
dc.description.references | DETREZ, C., TETU, T., SANGWAN, R. S., & SANGWAN-NORREEL, B. S. (1988). Direct Organogenesis from Petiole and Thin Cell Layer Explants in Sugar Beet CulturedIn Vitro. Journal of Experimental Botany, 39(7), 917-926. doi:10.1093/jxb/39.7.917 | es_ES |
dc.description.references | Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241 | es_ES |
dc.description.references | Ervin, C. D. (1939). Polysomaty in Cucumis Melo. Proceedings of the National Academy of Sciences, 25(7), 335-338. doi:10.1073/pnas.25.7.335 | es_ES |
dc.description.references | Ervin, C. D. (1941). A STUDY OF POLYSOMATY IN CUCUMIS MELO. American Journal of Botany, 28(2), 113-124. doi:10.1002/j.1537-2197.1941.tb07950.x | es_ES |
dc.description.references | Evans, D. A., & Bravo, J. E. (1986). Phenotypic and Genotypic Stability of Tissue Cultured Plants. Current Plant Science and Biotechnology in Agriculture, 73-94. doi:10.1007/978-94-009-4444-2_6 | es_ES |
dc.description.references | Ezura, H., Nishimiya, S., & Kasumi, M. (1993). Efficient regeneration of plants independent of exogeneous growth regulators in bell pepper (Capsicum annumm L.). Plant Cell Reports, 12(12). doi:10.1007/bf00233418 | es_ES |
dc.description.references | Feeney, M., & Punja, Z. K. (2003). Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cellular & Developmental Biology - Plant, 39(6), 578-585. doi:10.1079/ivp2003454 | es_ES |
dc.description.references | Feeney, M., & Punja, Z. K. (2014). Hemp (Cannabis sativa L.). Agrobacterium Protocols, 319-329. doi:10.1007/978-1-4939-1658-0_25 | es_ES |
dc.description.references | Feeney, M., & Punja, Z. K. (2017). The Role of Agrobacterium-Mediated and Other Gene-Transfer Technologies in Cannabis Research and Product Development. Cannabis sativa L. - Botany and Biotechnology, 343-363. doi:10.1007/978-3-319-54564-6_16 | es_ES |
dc.description.references | Cardoso-Furlan, F., Gavilan, N. H., Zichner-Zorz, A., Oliveira, L. S. de, Konzen, E. R., & Ebling-Brondani, G. (2018). Active chlorine and charcoal affect the in vitro culture of Bambusa vulgaris. Bosque (Valdivia), 39(1), 61-70. doi:10.4067/s0717-92002018000100061 | es_ES |
dc.description.references | García-Fortea, E., Lluch-Ruiz, A., Pineda-Chaza, B. J., García-Pérez, A., Bracho-Gil, J. P., Plazas, M., … Prohens, J. (2020). A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant Biology, 20(1). doi:10.1186/s12870-019-2215-y | es_ES |
dc.description.references | Iannicelli, J., Guariniello, J., Tossi, V. E., Regalado, J. J., Di Ciaccio, L., van Baren, C. M., … Escandón, A. S. (2020). The «polyploid effect» in the breeding of aromatic and medicinal species. Scientia Horticulturae, 260, 108854. doi:10.1016/j.scienta.2019.108854 | es_ES |
dc.description.references | Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. doi:10.1080/10618600.1996.10474713 | es_ES |
dc.description.references | LaRue, C. D. (1933). Regeneration in Mutilated Seedlings. Proceedings of the National Academy of Sciences, 19(1), 53-63. doi:10.1073/pnas.19.1.53 | es_ES |
dc.description.references | Lata, H., Chandra, S., Khan, I., & ElSohly, M. A. (2008). Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cellular & Developmental Biology - Plant, 45(1), 12-19. doi:10.1007/s11627-008-9167-5 | es_ES |
dc.description.references | Lata, H., Chandra, S., Khan, I., & ElSohly, M. (2010). High Frequency Plant Regeneration from Leaf Derived Callus of HighΔ9-Tetrahydrocannabinol YieldingCannabis sativaL. Planta Medica, 76(14), 1629-1633. doi:10.1055/s-0030-1249773 | es_ES |
dc.description.references | Lata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2016). In Vitro Propagation of Cannabis sativa L. and Evaluation of Regenerated Plants for Genetic Fidelity and Cannabinoids Content for Quality Assurance. Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition, 275-288. doi:10.1007/978-1-4939-3332-7_19 | es_ES |
dc.description.references | Lata, H., Chandra, S., Techen, N., Khan, I. A., & ElSohly, M. A. (2016). In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(1), 18-26. doi:10.1016/j.jarmap.2015.12.001 | es_ES |
dc.description.references | Lata, H., Chandra, S., Khan, I. A., & ElSohly, M. A. (2017). Micropropagation of Cannabis sativa L.—An Update. Cannabis sativa L. - Botany and Biotechnology, 285-297. doi:10.1007/978-3-319-54564-6_13 | es_ES |
dc.description.references | Ranalli, P. (1999). Advances in Hemp Research. doi:10.1201/9781498705820 | es_ES |
dc.description.references | Mansouri, H., & Bagheri, M. (2017). Induction of Polyploidy and Its Effect on Cannabis sativa L. Cannabis sativa L. - Botany and Biotechnology, 365-383. doi:10.1007/978-3-319-54564-6_17 | es_ES |
dc.description.references | Mhatre, M., Bapat, V. A., & Rao, P. S. (1985). Regeneration of plants from the culture of leaves and axillary buds in mulberry (Morus indica L.). Plant Cell Reports, 4(2), 78-80. doi:10.1007/bf00269211 | es_ES |
dc.description.references | Miller, R. H. (1959). MORPHOLOGY OF HUMULUS LUPULUS. II. SECONDARY GROWTH IN THE ROOT AND SEEDLING VASCULARIZATION. American Journal of Botany, 46(4), 269-277. doi:10.1002/j.1537-2197.1959.tb07012.x | es_ES |
dc.description.references | Minocha, S. C. (1987). Plant Growth Regulators and Morphogenesis in Cell and Tissue Culture of Forest Trees. Forestry Sciences, 50-66. doi:10.1007/978-94-017-0994-1_4 | es_ES |
dc.description.references | Mishchenko, S., Mokher, J., Laiko, I., Burbulis, N., Kyrychenko, H., & Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės ūkio mokslai, 24(2). doi:10.6001/zemesukiomokslai.v24i2.3496 | es_ES |
dc.description.references | Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x | es_ES |
dc.description.references | Parsons, J. L., Martin, S. L., James, T., Golenia, G., Boudko, E. A., & Hepworth, S. R. (2019). Polyploidization for the Genetic Improvement of Cannabis sativa. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00476 | es_ES |
dc.description.references | Ramírez-Mosqueda, M. A., & Iglesias-Andreu, L. G. (2015). Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell, Tissue and Organ Culture (PCTOC), 123(3), 657-664. doi:10.1007/s11240-015-0868-2 | es_ES |
dc.description.references | RAMSAY, G., & KUMAR, A. (1990). Transformation ofVicia fabaCotyledon and Stem Tissues7Agrobacterium rhizogenes: Infectivity and Cytological Studies. Journal of Experimental Botany, 41(7), 841-847. doi:10.1093/jxb/41.7.841 | es_ES |
dc.description.references | Recupero, G. R., Russo, G., & Recupero, S. (2005). New Promising Citrus Triploid Hybrids Selected from Crosses between Monoembryonic Diploid Female and Tetraploid Male Parents. HortScience, 40(3), 516-520. doi:10.21273/hortsci.40.3.516 | es_ES |
dc.description.references | Ren, Y., Bang, H., Gould, J., Rathore, K. S., Patil, B. S., & Crosby, K. M. (2012). Shoot regeneration and ploidy variation in tissue culture of honeydew melon (Cucumis melo L. inodorus). In Vitro Cellular & Developmental Biology - Plant, 49(2), 223-229. doi:10.1007/s11627-012-9482-8 | es_ES |
dc.description.references | RICHEZ-DUMANOIS, C., BRAUT-BOUCHER, F., COSSON, L., & PARIS, M. (1986). Multiplication végétativein vitrodu chanvre (Cannabis sativa L.). Application à la conserva- tion des clones sélectionnés. Agronomie, 6(5), 487-495. doi:10.1051/agro:19860510 | es_ES |
dc.description.references | Sairam Reddy, P., Rodrigues, R., & Rajasekharan, R. (2001). Plant Cell, Tissue and Organ Culture, 66(3), 183-188. doi:10.1023/a:1010697813852 | es_ES |
dc.description.references | Silvarolla, M. B., Mazzafera, P., Lima, M. M. A. de, Medina Filho, H. P., & Fazuoli, L. C. (1999). Ploidy level and caffeine content in leaves of Coffea. Scientia Agricola, 56(3), 661-663. doi:10.1590/s0103-90161999000300021 | es_ES |
dc.description.references | Sliwinska, E., & Lukaszewska, E. (2005). Polysomaty in growing in vitro sugar-beet (Beta vulgaris L.) seedlings of different ploidy level. Plant Science, 168(4), 1067-1074. doi:10.1016/j.plantsci.2004.12.003 | es_ES |
dc.description.references | Smýkalová, I., Vrbová, M., Cvečková, M., Plačková, L., Žukauskaitė, A., Zatloukal, M., … Griga, M. (2019). The effects of novel synthetic cytokinin derivatives and endogenous cytokinins on the in vitro growth responses of hemp (Cannabis sativa L.) explants. Plant Cell, Tissue and Organ Culture (PCTOC), 139(2), 381-394. doi:10.1007/s11240-019-01693-5 | es_ES |
dc.description.references | Su, Y.-H., Liu, Y.-B., & Zhang, X.-S. (2011). Auxin–Cytokinin Interaction Regulates Meristem Development. Molecular Plant, 4(4), 616-625. doi:10.1093/mp/ssr007 | es_ES |
dc.description.references | Tanimoto, S., & Harada, H. (1984). Roles of Auxin and Cytokinin in Organogenesis in Torenia Stem Segments Cultured in vitro. Journal of Plant Physiology, 115(1), 11-18. doi:10.1016/s0176-1617(84)80046-2 | es_ES |
dc.description.references | Urits, I., Borchart, M., Hasegawa, M., Kochanski, J., Orhurhu, V., & Viswanath, O. (2019). An Update of Current Cannabis-Based Pharmaceuticals in Pain Medicine. Pain and Therapy, 8(1), 41-51. doi:10.1007/s40122-019-0114-4 | es_ES |
dc.description.references | Van den Bulk, R. W., Löffler, H. J. M., Lindhout, W. H., & Koornneef, M. (1990). Somaclonal variation in tomato: effect of explant source and a comparison with chemical mutagenesis. Theoretical and Applied Genetics, 80(6), 817-825. doi:10.1007/bf00224199 | es_ES |
dc.description.references | Van Hieu, P. (2019). Polyploid Gene Expression and Regulation in Polysomic Polyploids. American Journal of Plant Sciences, 10(08), 1409-1443. doi:10.4236/ajps.2019.108101 | es_ES |
dc.description.references | Vieira, L. M., Rocha, D. I., Taquetti, M. F., da Silva, L. C., de Campos, J. M. S., Viccini, L. F., & Otoni, W. C. (2014). In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): the influence of explant type, growth regulators, and incubation conditions. In Vitro Cellular & Developmental Biology - Plant, 50(6), 738-745. doi:10.1007/s11627-014-9650-0 | es_ES |
dc.description.references | Wahby, I., Caba, J. M., & Ligero, F. (2013). Agrobacteriuminfection of hemp (Cannabis sativaL.): establishment of hairy root cultures. Journal of Plant Interactions, 8(4), 312-320. doi:10.1080/17429145.2012.746399 | es_ES |
dc.description.references | Wahby, I., Caba, J. M., & Ligero, F. (2017). Hairy Root Culture as a Biotechnological Tool in C. sativa. Cannabis sativa L. - Botany and Biotechnology, 299-317. doi:10.1007/978-3-319-54564-6_14 | es_ES |
dc.description.references | Wielgus, K., Luwanska, A., Lassocinski, W., & Kaczmarek, Z. (2008). Estimation ofCannabis sativaL. Tissue Culture Conditions Essential for Callus Induction and Plant Regeneration. Journal of Natural Fibers, 5(3), 199-207. doi:10.1080/15440470801976045 | es_ES |