- -

Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability

Mostrar el registro completo del ítem

Bascuas-Véntola, SM.; Salvador, A.; Hernando Hernando, MI.; Quiles Chuliá, MD. (2020). Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability. Frontiers in Sustainable Food Systems. 4:1-8. https://doi.org/10.3389/fsufs.2020.00111

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168117

Ficheros en el ítem

Metadatos del ítem

Título: Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability
Autor: Bascuas-Véntola, Santiago Martín Salvador, Ana Hernando Hernando, Mª Isabel Quiles Chuliá, Mª Desamparados
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Numerous studies conducted have shown a direct relationship between the high consumption of saturated andtrans-fats and the risk of suffering from cardiovascular diseases, diabetes, and different cancers. Oleogels, ...[+]
Palabras clave: Oleogelation , HPMC , Xanthan gum , Sunflower oil , Rheological properties , Peroxide value , Light microscopy
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Sustainable Food Systems. (eissn: 2571-581X )
DOI: 10.3389/fsufs.2020.00111
Editorial:
Frontiers
Versión del editor: https://doi.org/10.3389/fsufs.2020.00111
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099738-B-C22/ES/ESTRUCTURACION DE ACEITES MEDIANTE LA UTILIZACION DE HIDROCOLOIDES COMO ESTRATEGIA PARA SUSTITUIR GRASAS SATURADAS DE ALTA PLASTICIDAD. INVESTIGACION REOLOGICA, ESTRUCTURAL Y/
Agradecimientos:
The authors would like to thank Universitat Politecnica de Valencia by FPI-UPV 2017 grant and the project RTI2018-099738-B-C22 from the Ministerio de Ciencia, Innovacion y Universidades.
Tipo: Artículo

References

Abdolmaleki, K., Alizadeh, L., Nayebzadeh, K., Hosseini, S. M., & Shahin, R. (2020). Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method. Journal of Texture Studies, 51(2), 290-299. doi:10.1111/jtxs.12469

Albi, T., Lanzón, A., Guinda, A., Pérez-Camino, M. C., & León, M. (1997). Microwave and Conventional Heating Effects on Some Physical and Chemical Parameters of Edible Fats. Journal of Agricultural and Food Chemistry, 45(8), 3000-3003. doi:10.1021/jf970168c

Bascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2020). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science & Technology, 55(4), 1458-1467. doi:10.1111/ijfs.14469 [+]
Abdolmaleki, K., Alizadeh, L., Nayebzadeh, K., Hosseini, S. M., & Shahin, R. (2020). Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method. Journal of Texture Studies, 51(2), 290-299. doi:10.1111/jtxs.12469

Albi, T., Lanzón, A., Guinda, A., Pérez-Camino, M. C., & León, M. (1997). Microwave and Conventional Heating Effects on Some Physical and Chemical Parameters of Edible Fats. Journal of Agricultural and Food Chemistry, 45(8), 3000-3003. doi:10.1021/jf970168c

Bascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2020). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science & Technology, 55(4), 1458-1467. doi:10.1111/ijfs.14469

Bastiat, G., & Leroux, J.-C. (2009). Pharmaceutical organogels prepared from aromatic amino acid derivatives. Journal of Materials Chemistry, 19(23), 3867. doi:10.1039/b822657a

Bodennec, M., Guo, Q., & Rousseau, D. (2016). Molecular and microstructural characterization of lecithin-based oleogels made with vegetable oil. RSC Advances, 6(53), 47373-47381. doi:10.1039/c6ra04324k

Camino, N. A., Pérez, O. E., Sanchez, C. C., Rodriguez Patino, J. M., & Pilosof, A. M. R. (2009). Hydroxypropylmethylcellulose surface activity at equilibrium and adsorption dynamics at the air–water and oil–water interfaces. Food Hydrocolloids, 23(8), 2359-2368. doi:10.1016/j.foodhyd.2009.06.013

Carnali, J. O. (1992). Gelation in physically associating biopolymer systems. Rheologica Acta, 31(5), 399-412. doi:10.1007/bf00701120

Cho, Y. J., & Lee, S. (2015). Extraction of rutin from Tartary buckwheat milling fractions and evaluation of its thermal stability in an instant fried noodle system. Food Chemistry, 176, 40-44. doi:10.1016/j.foodchem.2014.12.020

De Vries, A., Gomez, Y. L., van der Linden, E., & Scholten, E. (2017). The effect of oil type on network formation by protein aggregates into oleogels. RSC Advances, 7(19), 11803-11812. doi:10.1039/c7ra00396j

Morais, A. R. do V., Alencar, É. do N., Xavier Júnior, F. H., Oliveira, C. M. de, Marcelino, H. R., Barratt, G., … Elaissari, A. (2016). Freeze-drying of emulsified systems: A review. International Journal of Pharmaceutics, 503(1-2), 102-114. doi:10.1016/j.ijpharm.2016.02.047

Doan, C. D., Patel, A. R., Tavernier, I., De Clercq, N., Van Raemdonck, K., Van de Walle, D., … Dewettinck, K. (2016). The feasibility of wax-based oleogel as a potential co-structurant with palm oil in low-saturated fat confectionery fillings. European Journal of Lipid Science and Technology, 118(12), 1903-1914. doi:10.1002/ejlt.201500172

Encina-Zelada, C. R., Cadavez, V., Teixeira, J. A., & Gonzales-Barron, U. (2019). Optimization of Quality Properties of Gluten-Free Bread by a Mixture Design of Xanthan, Guar, and Hydroxypropyl Methyl Cellulose Gums. Foods, 8(5), 156. doi:10.3390/foods8050156

Giacintucci, V., Di Mattia, C. D., Sacchetti, G., Flamminii, F., Gravelle, A. J., Baylis, B., … Pittia, P. (2018). Ethylcellulose oleogels with extra virgin olive oil: the role of oil minor components on microstructure and mechanical strength. Food Hydrocolloids, 84, 508-514. doi:10.1016/j.foodhyd.2018.05.030

Gómez-Alonso, S., Mancebo-Campos, V., Desamparados Salvador, M., & Fregapane, G. (2004). Oxidation kinetics in olive oil triacylglycerols under accelerated shelf-life testing (25–75 °C). European Journal of Lipid Science and Technology, 106(6), 369-375. doi:10.1002/ejlt.200300921

Gravelle, A. J., Barbut, S., & Marangoni, A. G. (2012). Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Research International, 48(2), 578-583. doi:10.1016/j.foodres.2012.05.020

It's Your Health-Fats: The Good The Bad and The Ugly2012

Jiang, Y., Liu, L., Wang, B., Sui, X., Zhong, Y., Zhang, L., … Xu, H. (2018). Cellulose-rich oleogels prepared with an emulsion-templated approach. Food Hydrocolloids, 77, 460-464. doi:10.1016/j.foodhyd.2017.10.023

Kozłowska, M., & Gruczyńska, E. (2018). Comparison of the oxidative stability of soybean and sunflower oils enriched with herbal plant extracts. Chemical Papers, 72(10), 2607-2615. doi:10.1007/s11696-018-0516-5

Lapasin, R., & Pricl, S. (1995). Rheology of polysaccharide systems. Rheology of Industrial Polysaccharides: Theory and Applications, 250-494. doi:10.1007/978-1-4615-2185-3_4

Laredo, T., Barbut, S., & Marangoni, A. G. (2011). Molecular interactions of polymer oleogelation. Soft Matter, 7(6), 2734. doi:10.1039/c0sm00885k

Lee, J., Lee, Y., & Choe, E. (2006). Temperature dependence of the autoxidation and antioxidants of soybean, sunflower, and olive oil. European Food Research and Technology, 226(1-2), 239-246. doi:10.1007/s00217-006-0532-5

Li, X., Al-Assaf, S., Fang, Y., & Phillips, G. O. (2013). Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface. Carbohydrate Polymers, 91(2), 573-580. doi:10.1016/j.carbpol.2012.08.075

Lim, J., Jeong, S., Oh, I. K., & Lee, S. (2017). Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT, 84, 788-794. doi:10.1016/j.lwt.2017.06.054

Luo, S.-Z., Hu, X.-F., Jia, Y.-J., Pan, L.-H., Zheng, Z., Zhao, Y.-Y., … Jiang, S.-T. (2019). Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. Food Hydrocolloids, 95, 76-87. doi:10.1016/j.foodhyd.2019.04.016

Martins, A. J., Cerqueira, M. A., Cunha, R. L., & Vicente, A. A. (2017). Fortified beeswax oleogels: effect of β-carotene on the gel structure and oxidative stability. Food & Function, 8(11), 4241-4250. doi:10.1039/c7fo00953d

Maskan, M., & İ. Bağcı, H. (2003). The recovery of used sunflower seed oil utilized in repeated deep-fat frying process. European Food Research and Technology, 218(1), 26-31. doi:10.1007/s00217-003-0794-0

Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Physical Properties, Microstructure, Intermolecular Forces, and Oxidation Stability of Soybean Oil Oleogels Structured by Different Cellulose Ethers. European Journal of Lipid Science and Technology, 120(6), 1700287. doi:10.1002/ejlt.201700287

Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry, 246, 137-149. doi:10.1016/j.foodchem.2017.10.154

Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids, 77, 17-29. doi:10.1016/j.foodhyd.2017.09.006

Moghtadaei, M., Soltanizadeh, N., & Goli, S. A. H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108, 368-377. doi:10.1016/j.foodres.2018.03.051

Te Morenga, L., & Montez, J. M. (2017). Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis. PLOS ONE, 12(11), e0186672. doi:10.1371/journal.pone.0186672

Mozaffarian, D., & Clarke, R. (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. European Journal of Clinical Nutrition, 63(S2), S22-S33. doi:10.1038/sj.ejcn.1602976

Oh, I., Lee, J., Lee, H. G., & Lee, S. (2019). Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International, 122, 566-572. doi:10.1016/j.foodres.2019.01.012

Oh, I. K., & Lee, S. (2018). Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids, 77, 796-802. doi:10.1016/j.foodhyd.2017.11.022

O’Keefe, S. F., & Pike, O. A. (2010). Fat Characterization. Food Analysis, 239-260. doi:10.1007/978-1-4419-1478-1_14

Okuro, P. K., Tavernier, I., Bin Sintang, M. D., Skirtach, A. G., Vicente, A. A., Dewettinck, K., & Cunha, R. L. (2018). Synergistic interactions between lecithin and fruit wax in oleogel formation. Food & Function, 9(3), 1755-1767. doi:10.1039/c7fo01775h

Patel, A. R., Cludts, N., Sintang, M. D. B., Lesaffer, A., & Dewettinck, K. (2014). Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Funct., 5(11), 2833-2841. doi:10.1039/c4fo00624k

Patel, A. R., Cludts, N., Bin Sintang, M. D., Lewille, B., Lesaffer, A., & Dewettinck, K. (2014). Polysaccharide-Based Oleogels Prepared with an Emulsion-Templated Approach. ChemPhysChem, 15(16), 3435-3439. doi:10.1002/cphc.201402473

Patel, A. R., Rajarethinem, P. S., Cludts, N., Lewille, B., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2014). Biopolymer-Based Structuring of Liquid Oil into Soft Solids and Oleogels Using Water-Continuous Emulsions as Templates. Langmuir, 31(7), 2065-2073. doi:10.1021/la502829u

Patel, A. R., Schatteman, D., Lesaffer, A., & Dewettinck, K. (2013). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Adv., 3(45), 22900-22903. doi:10.1039/c3ra44763d

Pehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., & Sagdic, O. (2017). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 58(8), 1330-1341. doi:10.1080/10408398.2016.1256866

Rogers, M. A., Wright, A. J., & Marangoni, A. G. (2008). Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Soft Matter, 4(7), 1483. doi:10.1039/b803299h

Romoscanu, A. I., & Mezzenga, R. (2006). Emulsion-Templated Fully Reversible Protein-in-Oil Gels. Langmuir, 22(18), 7812-7818. doi:10.1021/la060878p

Scholten, E. (2019). Edible oleogels: how suitable are proteins as a structurant? Current Opinion in Food Science, 27, 36-42. doi:10.1016/j.cofs.2019.05.001

Singh, A., Auzanneau, F.-I., & Rogers, M. A. (2017). Advances in edible oleogel technologies – A decade in review. Food Research International, 97, 307-317. doi:10.1016/j.foodres.2017.04.022

Tanti, R., Barbut, S., & Marangoni, A. G. (2016). Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. Food Hydrocolloids, 61, 329-337. doi:10.1016/j.foodhyd.2016.05.032

Tanti, R., Barbut, S., & Marangoni, A. G. (2016). Oil stabilization of natural peanut butter using food grade polymers. Food Hydrocolloids, 61, 399-408. doi:10.1016/j.foodhyd.2016.05.034

Tavakoli, A., Sahari, M. A., & Barzegar, M. (2017). Antioxidant activity of Berberis integerrima seed oil as a natural antioxidant on the oxidative stability of soybean oil. International Journal of Food Properties, 20(sup3), S2914-S2925. doi:10.1080/10942912.2017.1382509

Tavernier, I., Doan, C. D., Van der Meeren, P., Heyman, B., & Dewettinck, K. (2018). The Potential of Waxes to Alter the Microstructural Properties of Emulsion-Templated Oleogels. European Journal of Lipid Science and Technology, 120(3), 1700393. doi:10.1002/ejlt.201700393

Consumption of Vegetable Oils Worldwide from 20135/2014 to 2019/2020, by Oil Type (in Million Metric Tons)2020

Vintiloiu, A., & Leroux, J.-C. (2008). Organogels and their use in drug delivery — A review. Journal of Controlled Release, 125(3), 179-192. doi:10.1016/j.jconrel.2007.09.014

Wollenweber, C., Makievski, A. V., Miller, R., & Daniels, R. (2000). Adsorption of hydroxypropyl methylcellulose at the liquid/liquid interface and the effect on emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172(1-3), 91-101. doi:10.1016/s0927-7757(00)00569-0

Yang, S., Li, G., Saleh, A. S. M., Yang, H., Wang, N., Wang, P., … Xiao, Z. (2017). Functional Characteristics of Oleogel Prepared from Sunflower Oil with β-Sitosterol and Stearic Acid. Journal of the American Oil Chemists’ Society, 94(9), 1153-1164. doi:10.1007/s11746-017-3026-7

Zetzl, A. K., Marangoni, A. G., & Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food & Function, 3(3), 327. doi:10.1039/c2fo10202a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem