- -

Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels

Mostrar el registro completo del ítem

García Martínez, A.; Monsalve-Serrano, J.; Sanchis-Pacheco, EJ.; Fogué-Robles, Á. (2020). Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels. Fuel. 280:1-15. https://doi.org/10.1016/j.fuel.2020.118670

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168334

Ficheros en el ítem

Metadatos del ítem

Título: Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels
Autor: García Martínez, Antonio Monsalve-Serrano, Javier Sanchis-Pacheco, Enrique José Fogué-Robles, Álvaro
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Dual-mode dual-fuel (DMDF) combustion stands over other low temperature combustion strategies as it is able to operate over the entire engine map by transitioning between reactivity controlled compression ignition and ...[+]
Palabras clave: Dual-fuel , High-flow injector , Emissions , Diesel , OMEx
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Fuel. (issn: 0016-2361 )
DOI: 10.1016/j.fuel.2020.118670
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.fuel.2020.118670
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
info:eu-repo/grantAgreement/UPV//SP20180148/
Agradecimientos:
The authors thanks VOLVO Group Trucks Technology and ARAMCO Overseas Company for supporting this research. The authors also acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting ...[+]
Tipo: Artículo

References

McKinsey & Company. (2019). Global Energy Perspective 2019: Reference Case. In Energy Insights (Issue January). https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2019. Accessed in December, 2019.

Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43-88. doi:10.1016/j.pecs.2018.10.001

Kalghatgi, G. (2019). Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport. Engineering, 5(3), 510-518. doi:10.1016/j.eng.2019.01.009 [+]
McKinsey & Company. (2019). Global Energy Perspective 2019: Reference Case. In Energy Insights (Issue January). https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2019. Accessed in December, 2019.

Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43-88. doi:10.1016/j.pecs.2018.10.001

Kalghatgi, G. (2019). Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport. Engineering, 5(3), 510-518. doi:10.1016/j.eng.2019.01.009

Erbach, G. (2018). BRIEFING: EU Legislation in Progress: CO2 emission standards for heavy-duty vehicles (Issue August). https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/628268/EPRS_BRI(2018)628268_EN.pdf. Accessed in April, 2019.

D. Miller, J., & Façanha, C. (2014). The state of clean transport policy a 2014 synthesis of vehicle and fuel policy developments. www.theicct.org/state-of-clean-transport-policy-2014. Accessed in 12, January, 2020.

Fontaras, G., Zacharof, N.-G., & Ciuffo, B. (2017). Fuel consumption and CO 2 emissions from passenger cars in Europe – Laboratory versus real-world emissions. Progress in Energy and Combustion Science, 60, 97-131. doi:10.1016/j.pecs.2016.12.004

Zhang, W., Bange, M., Bohemer, S., Khair, M., & Tan, J. (2013). Electric heating assisted passive and active regeneration for efficient emission controls of diesel engines (Patent No. US 2013/0213010 A1). https://patents.google.com/patent/US9708945.

Terdich N, Martinez-Botas R. Experimental efficiency characterization of an electrically assisted turbocharger. SAE Technical Papers; 2013, 6. https://doi.org/10.4271/2013-24-0122.

Luján, J. M., Bermúdez, V., Dolz, V., & Monsalve-Serrano, J. (2018). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112-121. doi:10.1016/j.atmosenv.2017.11.056

Breakthrough: new Bosch diesel technology provides solution to NOx problem. Available in https://www.bosch-presse.de/pressportal/de/en/breakthrough-new-bosch-diesel-technology-provides-solution-to-nox-problem-155524.html. Accessed in April, 2019.

Benajes, J., Martín, J., García, A., Villalta, D., & Warey, A. (2017). Swirl ratio and post injection strategies to improve late cycle diffusion combustion in a light-duty diesel engine. Applied Thermal Engineering, 123, 365-376. doi:10.1016/j.applthermaleng.2017.05.101

López, J. J., Martín, J., García, A., Villalta, D., & Warey, A. (2017). Implementation of two color method to investigate late cycle soot oxidation process in a CI engine under low load conditions. Applied Thermal Engineering, 113, 878-890. doi:10.1016/j.applthermaleng.2016.11.095

Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082

Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003

Martins M, Fischer I, Gusberti F, Sari R, Nora MD. HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine. SAE Technical Papers, 2017-March (March); 2017. https://doi.org/10.4271/2017-01-0733.

Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088

Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046

Pedrozo VB. An experimental study of ethanol-diesel dual-fuel combustion for high efficiency and clean heavy-duty engines [Brunel University of London]; 2017. http://bura.brunel.ac.uk/handle/2438/15850.

Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014

Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028

Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064

Toyir, J., Miloua, R., Elkadri, N. E., Nawdali, M., Toufik, H., Miloua, F., & Saito, M. (2009). Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Physics Procedia, 2(3), 1075-1079. doi:10.1016/j.phpro.2009.11.065

Bhardwaj, O. P., Kolbeck, A. F., Kkoerfer, T., & Honkanen, M. (2013). Potential of Hydrogenated Vegetable Oil (HVO) in Future High Efficiency Combustion System. SAE International Journal of Fuels and Lubricants, 6(1), 157-169. doi:10.4271/2013-01-1677

Neste Corporation. Neste Renewable Diesel Handbook. Neste Propietrary Publication; 2016, 1–56. https://www.neste.com/sites/default/files/attachments/neste_renewable_diesel_handbook.pdf . Accessed in September, 2019.

Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107

Deutz, S., Bongartz, D., Heuser, B., Kätelhön, A., Schulze Langenhorst, L., Omari, A., … Bardow, A. (2018). Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy & Environmental Science, 11(2), 331-343. doi:10.1039/c7ee01657c

Bongartz, D., Burre, J., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part I: Modeling and Analysis for OME1. Industrial & Engineering Chemistry Research, 58(12), 4881-4889. doi:10.1021/acs.iecr.8b05576

Burre, J., Bongartz, D., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME3–5. Industrial & Engineering Chemistry Research, 58(14), 5567-5578. doi:10.1021/acs.iecr.8b05577

Held, M., Tönges, Y., Pélerin, D., Härtl, M., Wachtmeister, G., & Burger, J. (2019). On the energetic efficiency of producing polyoxymethylene dimethyl ethers from CO2 using electrical energy. Energy & Environmental Science, 12(3), 1019-1034. doi:10.1039/c8ee02849d

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015

Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144

Systems EM. Emission Measurement Systems – HORIBA 2019. 1–3. https://www.horiba.com/en_en/products/by-segment/automotive-test-systems/emissions-measurement-systems/. Accessed in February, 2020.

AVL. Smoke Value Measurements with the Filter-Paper-Method (Issue June); 2005.

Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665

Burger, M., Schmehl, R., Prommersberger, K., Schäfer, O., Koch, R., & Wittig, S. (2003). Droplet evaporation modeling by the distillation curve model: accounting for kerosene fuel and elevated pressures. International Journal of Heat and Mass Transfer, 46(23), 4403-4412. doi:10.1016/s0017-9310(03)00286-2

Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370

PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017

European Parliament And The Council Of The European Union. (2018). Regulation (EC) No 595/2009 of The European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehiclec (Euro VI) and amending Regulation (EC) No 715/2007 and Directive 20. 52(68), 48–119. http://data.europa.eu/eli/reg/2009/595/oj.

Benajes J, Garcia A, Monsalve-Serrano J, Sari R. Evaluating the Efficiency of a Conventional Diesel Oxidation Catalyst for Dual-Fuel RCCI Diesel-Gasoline Combustion. SAE Technical Papers; 2018, 2018-Septe, 1–13. https://doi.org/10.4271/2018-01-1729.

Gamma Technologies. (2019). GT-POWER Engine Simulation Software | Gamma Technologies. https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software/ . Accessed in March, 2020.

García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034

García, A., Monsalve-Serrano, J., Villalta, D., & Lago Sari, R. (2019). Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 184, 327-337. doi:10.1016/j.enconman.2019.01.069

Ogren RM. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization [Oiwa State University]; 2015. https://lib.dr.iastate.edu/etd/14965.

Data sheets – Volvo Trucks Saudi Arabia. (n.d.). https://www.volvotrucks.com/en-sa/trucks/volvo-fe/specifications/data-sheets.html. Accessed in June, 2019.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem