- -

Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Sanchis-Pacheco, Enrique José es_ES
dc.contributor.author Fogué-Robles, Álvaro es_ES
dc.date.accessioned 2021-06-23T03:30:29Z
dc.date.available 2021-06-23T03:30:29Z
dc.date.issued 2020-11-15 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168334
dc.description.abstract [EN] Dual-mode dual-fuel (DMDF) combustion stands over other low temperature combustion strategies as it is able to operate over the entire engine map by transitioning between reactivity controlled compression ignition and diffusive combustion depending on the engine load. In combination with non-sooting e-fuels, it is able to achieve low NOx and soot levels even at high loads. Oxygenated fuels like poly-oxymethylene dimethyl ethers (OMEx) have been already proved to present an outstanding NOx-Soot trade-off improvement when used in combination with a DMDF combustion strategy. One drawback of OMEx is that, despite having a high reactivity, it has a low lower heating value, which requires considerably longer injection events compared to other traditional fuels in order to achieve the same engine power output. The long injections limit the flexibility of the injection strategy and result in extremely long combustion durations. A possible solution to this problem resides in moving towards injectors with higher flow rate capacities, but this may compromise the mixing and combustion processes. This work aims to shed some light on the implications of changing the engine hardware to overcome this limitation by testing a DMDF mull-cylinder engine using gasoline as the low-reactivity fuel and diesel or OMEx as the high reactivity fuels with injectors of different flow capacity. The results show that a concise analysis of the involved phenomenology of the combustion process allows to find out the trade-off between the engine-out emissions and the mixing capacity of the injection system while the engine performance is not significantly affected. es_ES
dc.description.sponsorship The authors thanks VOLVO Group Trucks Technology and ARAMCO Overseas Company for supporting this research. The authors also acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R) and the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (PAID-06-18). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Dual-fuel es_ES
dc.subject High-flow injector es_ES
dc.subject Emissions es_ES
dc.subject Diesel es_ES
dc.subject OMEx es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2020.118670 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180148/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation García Martínez, A.; Monsalve-Serrano, J.; Sanchis-Pacheco, EJ.; Fogué-Robles, Á. (2020). Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels. Fuel. 280:1-15. https://doi.org/10.1016/j.fuel.2020.118670 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2020.118670 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 280 es_ES
dc.relation.pasarela S\416144 es_ES
dc.contributor.funder ARAMCO Overseas Company es_ES
dc.contributor.funder Volvo Group Trucks Technology es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references McKinsey & Company. (2019). Global Energy Perspective 2019: Reference Case. In Energy Insights (Issue January). https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2019. Accessed in December, 2019. es_ES
dc.description.references Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43-88. doi:10.1016/j.pecs.2018.10.001 es_ES
dc.description.references Kalghatgi, G. (2019). Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport. Engineering, 5(3), 510-518. doi:10.1016/j.eng.2019.01.009 es_ES
dc.description.references Erbach, G. (2018). BRIEFING: EU Legislation in Progress: CO2 emission standards for heavy-duty vehicles (Issue August). https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/628268/EPRS_BRI(2018)628268_EN.pdf. Accessed in April, 2019. es_ES
dc.description.references D. Miller, J., & Façanha, C. (2014). The state of clean transport policy a 2014 synthesis of vehicle and fuel policy developments. www.theicct.org/state-of-clean-transport-policy-2014. Accessed in 12, January, 2020. es_ES
dc.description.references Fontaras, G., Zacharof, N.-G., & Ciuffo, B. (2017). Fuel consumption and CO 2 emissions from passenger cars in Europe – Laboratory versus real-world emissions. Progress in Energy and Combustion Science, 60, 97-131. doi:10.1016/j.pecs.2016.12.004 es_ES
dc.description.references Zhang, W., Bange, M., Bohemer, S., Khair, M., & Tan, J. (2013). Electric heating assisted passive and active regeneration for efficient emission controls of diesel engines (Patent No. US 2013/0213010 A1). https://patents.google.com/patent/US9708945. es_ES
dc.description.references Terdich N, Martinez-Botas R. Experimental efficiency characterization of an electrically assisted turbocharger. SAE Technical Papers; 2013, 6. https://doi.org/10.4271/2013-24-0122. es_ES
dc.description.references Luján, J. M., Bermúdez, V., Dolz, V., & Monsalve-Serrano, J. (2018). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112-121. doi:10.1016/j.atmosenv.2017.11.056 es_ES
dc.description.references Breakthrough: new Bosch diesel technology provides solution to NOx problem. Available in https://www.bosch-presse.de/pressportal/de/en/breakthrough-new-bosch-diesel-technology-provides-solution-to-nox-problem-155524.html. Accessed in April, 2019. es_ES
dc.description.references Benajes, J., Martín, J., García, A., Villalta, D., & Warey, A. (2017). Swirl ratio and post injection strategies to improve late cycle diffusion combustion in a light-duty diesel engine. Applied Thermal Engineering, 123, 365-376. doi:10.1016/j.applthermaleng.2017.05.101 es_ES
dc.description.references López, J. J., Martín, J., García, A., Villalta, D., & Warey, A. (2017). Implementation of two color method to investigate late cycle soot oxidation process in a CI engine under low load conditions. Applied Thermal Engineering, 113, 878-890. doi:10.1016/j.applthermaleng.2016.11.095 es_ES
dc.description.references Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082 es_ES
dc.description.references Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 es_ES
dc.description.references Martins M, Fischer I, Gusberti F, Sari R, Nora MD. HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine. SAE Technical Papers, 2017-March (March); 2017. https://doi.org/10.4271/2017-01-0733. es_ES
dc.description.references Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088 es_ES
dc.description.references Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046 es_ES
dc.description.references Pedrozo VB. An experimental study of ethanol-diesel dual-fuel combustion for high efficiency and clean heavy-duty engines [Brunel University of London]; 2017. http://bura.brunel.ac.uk/handle/2438/15850. es_ES
dc.description.references Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 es_ES
dc.description.references Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064 es_ES
dc.description.references Toyir, J., Miloua, R., Elkadri, N. E., Nawdali, M., Toufik, H., Miloua, F., & Saito, M. (2009). Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Physics Procedia, 2(3), 1075-1079. doi:10.1016/j.phpro.2009.11.065 es_ES
dc.description.references Bhardwaj, O. P., Kolbeck, A. F., Kkoerfer, T., & Honkanen, M. (2013). Potential of Hydrogenated Vegetable Oil (HVO) in Future High Efficiency Combustion System. SAE International Journal of Fuels and Lubricants, 6(1), 157-169. doi:10.4271/2013-01-1677 es_ES
dc.description.references Neste Corporation. Neste Renewable Diesel Handbook. Neste Propietrary Publication; 2016, 1–56. https://www.neste.com/sites/default/files/attachments/neste_renewable_diesel_handbook.pdf . Accessed in September, 2019. es_ES
dc.description.references Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107 es_ES
dc.description.references Deutz, S., Bongartz, D., Heuser, B., Kätelhön, A., Schulze Langenhorst, L., Omari, A., … Bardow, A. (2018). Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy & Environmental Science, 11(2), 331-343. doi:10.1039/c7ee01657c es_ES
dc.description.references Bongartz, D., Burre, J., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part I: Modeling and Analysis for OME1. Industrial & Engineering Chemistry Research, 58(12), 4881-4889. doi:10.1021/acs.iecr.8b05576 es_ES
dc.description.references Burre, J., Bongartz, D., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME3–5. Industrial & Engineering Chemistry Research, 58(14), 5567-5578. doi:10.1021/acs.iecr.8b05577 es_ES
dc.description.references Held, M., Tönges, Y., Pélerin, D., Härtl, M., Wachtmeister, G., & Burger, J. (2019). On the energetic efficiency of producing polyoxymethylene dimethyl ethers from CO2 using electrical energy. Energy & Environmental Science, 12(3), 1019-1034. doi:10.1039/c8ee02849d es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 es_ES
dc.description.references Systems EM. Emission Measurement Systems – HORIBA 2019. 1–3. https://www.horiba.com/en_en/products/by-segment/automotive-test-systems/emissions-measurement-systems/. Accessed in February, 2020. es_ES
dc.description.references AVL. Smoke Value Measurements with the Filter-Paper-Method (Issue June); 2005. es_ES
dc.description.references Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665 es_ES
dc.description.references Burger, M., Schmehl, R., Prommersberger, K., Schäfer, O., Koch, R., & Wittig, S. (2003). Droplet evaporation modeling by the distillation curve model: accounting for kerosene fuel and elevated pressures. International Journal of Heat and Mass Transfer, 46(23), 4403-4412. doi:10.1016/s0017-9310(03)00286-2 es_ES
dc.description.references Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370 es_ES
dc.description.references PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017 es_ES
dc.description.references European Parliament And The Council Of The European Union. (2018). Regulation (EC) No 595/2009 of The European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehiclec (Euro VI) and amending Regulation (EC) No 715/2007 and Directive 20. 52(68), 48–119. http://data.europa.eu/eli/reg/2009/595/oj. es_ES
dc.description.references Benajes J, Garcia A, Monsalve-Serrano J, Sari R. Evaluating the Efficiency of a Conventional Diesel Oxidation Catalyst for Dual-Fuel RCCI Diesel-Gasoline Combustion. SAE Technical Papers; 2018, 2018-Septe, 1–13. https://doi.org/10.4271/2018-01-1729. es_ES
dc.description.references Gamma Technologies. (2019). GT-POWER Engine Simulation Software | Gamma Technologies. https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software/ . Accessed in March, 2020. es_ES
dc.description.references García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., & Lago Sari, R. (2019). Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 184, 327-337. doi:10.1016/j.enconman.2019.01.069 es_ES
dc.description.references Ogren RM. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization [Oiwa State University]; 2015. https://lib.dr.iastate.edu/etd/14965. es_ES
dc.description.references Data sheets – Volvo Trucks Saudi Arabia. (n.d.). https://www.volvotrucks.com/en-sa/trucks/volvo-fe/specifications/data-sheets.html. Accessed in June, 2019. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem