Mostrar el registro sencillo del ítem
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | Monsalve-Serrano, Javier | es_ES |
dc.contributor.author | Sanchis-Pacheco, Enrique José | es_ES |
dc.contributor.author | Fogué-Robles, Álvaro | es_ES |
dc.date.accessioned | 2021-06-23T03:30:29Z | |
dc.date.available | 2021-06-23T03:30:29Z | |
dc.date.issued | 2020-11-15 | es_ES |
dc.identifier.issn | 0016-2361 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168334 | |
dc.description.abstract | [EN] Dual-mode dual-fuel (DMDF) combustion stands over other low temperature combustion strategies as it is able to operate over the entire engine map by transitioning between reactivity controlled compression ignition and diffusive combustion depending on the engine load. In combination with non-sooting e-fuels, it is able to achieve low NOx and soot levels even at high loads. Oxygenated fuels like poly-oxymethylene dimethyl ethers (OMEx) have been already proved to present an outstanding NOx-Soot trade-off improvement when used in combination with a DMDF combustion strategy. One drawback of OMEx is that, despite having a high reactivity, it has a low lower heating value, which requires considerably longer injection events compared to other traditional fuels in order to achieve the same engine power output. The long injections limit the flexibility of the injection strategy and result in extremely long combustion durations. A possible solution to this problem resides in moving towards injectors with higher flow rate capacities, but this may compromise the mixing and combustion processes. This work aims to shed some light on the implications of changing the engine hardware to overcome this limitation by testing a DMDF mull-cylinder engine using gasoline as the low-reactivity fuel and diesel or OMEx as the high reactivity fuels with injectors of different flow capacity. The results show that a concise analysis of the involved phenomenology of the combustion process allows to find out the trade-off between the engine-out emissions and the mixing capacity of the injection system while the engine performance is not significantly affected. | es_ES |
dc.description.sponsorship | The authors thanks VOLVO Group Trucks Technology and ARAMCO Overseas Company for supporting this research. The authors also acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R) and the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (PAID-06-18). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Fuel | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Dual-fuel | es_ES |
dc.subject | High-flow injector | es_ES |
dc.subject | Emissions | es_ES |
dc.subject | Diesel | es_ES |
dc.subject | OMEx | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.fuel.2020.118670 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180148/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | García Martínez, A.; Monsalve-Serrano, J.; Sanchis-Pacheco, EJ.; Fogué-Robles, Á. (2020). Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels. Fuel. 280:1-15. https://doi.org/10.1016/j.fuel.2020.118670 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.fuel.2020.118670 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 280 | es_ES |
dc.relation.pasarela | S\416144 | es_ES |
dc.contributor.funder | ARAMCO Overseas Company | es_ES |
dc.contributor.funder | Volvo Group Trucks Technology | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | McKinsey & Company. (2019). Global Energy Perspective 2019: Reference Case. In Energy Insights (Issue January). https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2019. Accessed in December, 2019. | es_ES |
dc.description.references | Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43-88. doi:10.1016/j.pecs.2018.10.001 | es_ES |
dc.description.references | Kalghatgi, G. (2019). Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport. Engineering, 5(3), 510-518. doi:10.1016/j.eng.2019.01.009 | es_ES |
dc.description.references | Erbach, G. (2018). BRIEFING: EU Legislation in Progress: CO2 emission standards for heavy-duty vehicles (Issue August). https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/628268/EPRS_BRI(2018)628268_EN.pdf. Accessed in April, 2019. | es_ES |
dc.description.references | D. Miller, J., & Façanha, C. (2014). The state of clean transport policy a 2014 synthesis of vehicle and fuel policy developments. www.theicct.org/state-of-clean-transport-policy-2014. Accessed in 12, January, 2020. | es_ES |
dc.description.references | Fontaras, G., Zacharof, N.-G., & Ciuffo, B. (2017). Fuel consumption and CO 2 emissions from passenger cars in Europe – Laboratory versus real-world emissions. Progress in Energy and Combustion Science, 60, 97-131. doi:10.1016/j.pecs.2016.12.004 | es_ES |
dc.description.references | Zhang, W., Bange, M., Bohemer, S., Khair, M., & Tan, J. (2013). Electric heating assisted passive and active regeneration for efficient emission controls of diesel engines (Patent No. US 2013/0213010 A1). https://patents.google.com/patent/US9708945. | es_ES |
dc.description.references | Terdich N, Martinez-Botas R. Experimental efficiency characterization of an electrically assisted turbocharger. SAE Technical Papers; 2013, 6. https://doi.org/10.4271/2013-24-0122. | es_ES |
dc.description.references | Luján, J. M., Bermúdez, V., Dolz, V., & Monsalve-Serrano, J. (2018). An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS). Atmospheric Environment, 174, 112-121. doi:10.1016/j.atmosenv.2017.11.056 | es_ES |
dc.description.references | Breakthrough: new Bosch diesel technology provides solution to NOx problem. Available in https://www.bosch-presse.de/pressportal/de/en/breakthrough-new-bosch-diesel-technology-provides-solution-to-nox-problem-155524.html. Accessed in April, 2019. | es_ES |
dc.description.references | Benajes, J., Martín, J., García, A., Villalta, D., & Warey, A. (2017). Swirl ratio and post injection strategies to improve late cycle diffusion combustion in a light-duty diesel engine. Applied Thermal Engineering, 123, 365-376. doi:10.1016/j.applthermaleng.2017.05.101 | es_ES |
dc.description.references | López, J. J., Martín, J., García, A., Villalta, D., & Warey, A. (2017). Implementation of two color method to investigate late cycle soot oxidation process in a CI engine under low load conditions. Applied Thermal Engineering, 113, 878-890. doi:10.1016/j.applthermaleng.2016.11.095 | es_ES |
dc.description.references | Olmeda, P., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082 | es_ES |
dc.description.references | Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 | es_ES |
dc.description.references | Martins M, Fischer I, Gusberti F, Sari R, Nora MD. HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine. SAE Technical Papers, 2017-March (March); 2017. https://doi.org/10.4271/2017-01-0733. | es_ES |
dc.description.references | Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088 | es_ES |
dc.description.references | Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046 | es_ES |
dc.description.references | Pedrozo VB. An experimental study of ethanol-diesel dual-fuel combustion for high efficiency and clean heavy-duty engines [Brunel University of London]; 2017. http://bura.brunel.ac.uk/handle/2438/15850. | es_ES |
dc.description.references | Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 | es_ES |
dc.description.references | Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064 | es_ES |
dc.description.references | Toyir, J., Miloua, R., Elkadri, N. E., Nawdali, M., Toufik, H., Miloua, F., & Saito, M. (2009). Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Physics Procedia, 2(3), 1075-1079. doi:10.1016/j.phpro.2009.11.065 | es_ES |
dc.description.references | Bhardwaj, O. P., Kolbeck, A. F., Kkoerfer, T., & Honkanen, M. (2013). Potential of Hydrogenated Vegetable Oil (HVO) in Future High Efficiency Combustion System. SAE International Journal of Fuels and Lubricants, 6(1), 157-169. doi:10.4271/2013-01-1677 | es_ES |
dc.description.references | Neste Corporation. Neste Renewable Diesel Handbook. Neste Propietrary Publication; 2016, 1–56. https://www.neste.com/sites/default/files/attachments/neste_renewable_diesel_handbook.pdf . Accessed in September, 2019. | es_ES |
dc.description.references | Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107 | es_ES |
dc.description.references | Deutz, S., Bongartz, D., Heuser, B., Kätelhön, A., Schulze Langenhorst, L., Omari, A., … Bardow, A. (2018). Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy & Environmental Science, 11(2), 331-343. doi:10.1039/c7ee01657c | es_ES |
dc.description.references | Bongartz, D., Burre, J., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part I: Modeling and Analysis for OME1. Industrial & Engineering Chemistry Research, 58(12), 4881-4889. doi:10.1021/acs.iecr.8b05576 | es_ES |
dc.description.references | Burre, J., Bongartz, D., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME3–5. Industrial & Engineering Chemistry Research, 58(14), 5567-5578. doi:10.1021/acs.iecr.8b05577 | es_ES |
dc.description.references | Held, M., Tönges, Y., Pélerin, D., Härtl, M., Wachtmeister, G., & Burger, J. (2019). On the energetic efficiency of producing polyoxymethylene dimethyl ethers from CO2 using electrical energy. Energy & Environmental Science, 12(3), 1019-1034. doi:10.1039/c8ee02849d | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 | es_ES |
dc.description.references | Systems EM. Emission Measurement Systems – HORIBA 2019. 1–3. https://www.horiba.com/en_en/products/by-segment/automotive-test-systems/emissions-measurement-systems/. Accessed in February, 2020. | es_ES |
dc.description.references | AVL. Smoke Value Measurements with the Filter-Paper-Method (Issue June); 2005. | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665 | es_ES |
dc.description.references | Burger, M., Schmehl, R., Prommersberger, K., Schäfer, O., Koch, R., & Wittig, S. (2003). Droplet evaporation modeling by the distillation curve model: accounting for kerosene fuel and elevated pressures. International Journal of Heat and Mass Transfer, 46(23), 4403-4412. doi:10.1016/s0017-9310(03)00286-2 | es_ES |
dc.description.references | Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370 | es_ES |
dc.description.references | PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017 | es_ES |
dc.description.references | European Parliament And The Council Of The European Union. (2018). Regulation (EC) No 595/2009 of The European Parliament and of the Council of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehiclec (Euro VI) and amending Regulation (EC) No 715/2007 and Directive 20. 52(68), 48–119. http://data.europa.eu/eli/reg/2009/595/oj. | es_ES |
dc.description.references | Benajes J, Garcia A, Monsalve-Serrano J, Sari R. Evaluating the Efficiency of a Conventional Diesel Oxidation Catalyst for Dual-Fuel RCCI Diesel-Gasoline Combustion. SAE Technical Papers; 2018, 2018-Septe, 1–13. https://doi.org/10.4271/2018-01-1729. | es_ES |
dc.description.references | Gamma Technologies. (2019). GT-POWER Engine Simulation Software | Gamma Technologies. https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software/ . Accessed in March, 2020. | es_ES |
dc.description.references | García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034 | es_ES |
dc.description.references | García, A., Monsalve-Serrano, J., Villalta, D., & Lago Sari, R. (2019). Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Conversion and Management, 184, 327-337. doi:10.1016/j.enconman.2019.01.069 | es_ES |
dc.description.references | Ogren RM. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization [Oiwa State University]; 2015. https://lib.dr.iastate.edu/etd/14965. | es_ES |
dc.description.references | Data sheets – Volvo Trucks Saudi Arabia. (n.d.). https://www.volvotrucks.com/en-sa/trucks/volvo-fe/specifications/data-sheets.html. Accessed in June, 2019. | es_ES |