- -

Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-Calleja, Tamara Rocío es_ES
dc.contributor.author BONET-ARACIL, MARILÉS es_ES
dc.contributor.author Gisbert Paya, Jaime es_ES
dc.contributor.author Bou-Belda, Eva es_ES
dc.date.accessioned 2021-06-23T03:30:41Z
dc.date.available 2021-06-23T03:30:41Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168337
dc.description.abstract [EN] Thermal management is a critical factor in several areas, such as architecture, computing, and transportation. Improving thermal regulation effectiveness is a challenging materials engineers. New materials can be used as thermoregulators sucha as graphene or Phase Change Materials (PCM). Textile engineering is also concerned and researchers are developing numerous advances for effective thermal control. In this investigation, we focus on finding new approaches for thermal regulation of cellulosic fabrics combining both technologies, phase change materials and graphene. For this purpose, we compare the thermal behavior of a cellulosic fabric when applying a coating paste containing graphene or phase change materials individually, finding that their performances are similar during heating. Likewise, the synergy produced by using both materials in the same coating paste is studied, proving that the action of graphene and PCM simultaneously allows the dissipation of more heat energy than when acting individually. These results open new paths of research on thermoregulation that may be useful in numerous applications beyond textiles. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Materials Today Communications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Thermoregulation es_ES
dc.subject Grapheme es_ES
dc.subject Phase change materials es_ES
dc.subject Coating es_ES
dc.subject Textile es_ES
dc.subject.classification INGENIERIA TEXTIL Y PAPELERA es_ES
dc.title Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.mtcomm.2020.101557 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Ruiz-Calleja, TR.; Bonet-Aracil, M.; Gisbert Paya, J.; Bou-Belda, E. (2020). Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics. Materials Today Communications. 25:1-7. https://doi.org/10.1016/j.mtcomm.2020.101557 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.mtcomm.2020.101557 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.identifier.eissn 2352-4928 es_ES
dc.relation.pasarela S\417114 es_ES
dc.description.references Havenith, G. (2002). Interaction of Clothing and Thermoregulation. Exogenous Dermatology, 1(5), 221-230. doi:10.1159/000068802 es_ES
dc.description.references Flouris, A. D., & Cheung, S. S. (2006). Design and Control Optimization of Microclimate Liquid Cooling Systems Underneath Protective Clothing. Annals of Biomedical Engineering, 34(3), 359-372. doi:10.1007/s10439-005-9061-9 es_ES
dc.description.references Shaid, A., Wang, L., Islam, S., Cai, J. Y., & Padhye, R. (2016). Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile. Applied Thermal Engineering, 107, 602-611. doi:10.1016/j.applthermaleng.2016.06.187 es_ES
dc.description.references Tyurin, I. N., Getmantseva, V. V., & Andreeva, E. G. (2018). Analysis of Innovative Technologies of Thermoregulating Textile Materials. Fibre Chemistry, 50(1), 1-9. doi:10.1007/s10692-018-9918-y es_ES
dc.description.references Nejman, A., & Goetzendorf-Grabowska, B. (2013). Heat balance of textile materials modified with the mixtures of PCM microcapsules. Thermochimica Acta, 569, 144-150. doi:10.1016/j.tca.2013.07.023 es_ES
dc.description.references Mondal, S. (2008). Phase change materials for smart textiles – An overview. Applied Thermal Engineering, 28(11-12), 1536-1550. doi:10.1016/j.applthermaleng.2007.08.009 es_ES
dc.description.references Lu, Y., Xiao, X., Fu, J., Huan, C., Qi, S., Zhan, Y., … Xu, G. (2019). Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chemical Engineering Journal, 355, 532-539. doi:10.1016/j.cej.2018.08.189 es_ES
dc.description.references Ye, D. M. (2014). Research on PCM Textiles with Material Properties in Sports Wear Application. Advanced Materials Research, 910, 450-454. doi:10.4028/www.scientific.net/amr.910.450 es_ES
dc.description.references Doba Kadem, F., & Saraç, E. G. (2016). An experimental application on denim garment to give thermal regulation property. The Journal of The Textile Institute, 108(3), 353-360. doi:10.1080/00405000.2016.1166822 es_ES
dc.description.references Lin, S.-H. (2012). Phase Change Materials’ Application in Clothing Design. Transactions of the Materials Research Society of Japan, 37(2), 103-106. doi:10.14723/tmrsj.37.103 es_ES
dc.description.references Zalba, B., Marı́n, J. M., Cabeza, L. F., & Mehling, H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3), 251-283. doi:10.1016/s1359-4311(02)00192-8 es_ES
dc.description.references Hassabo, A. G. (2014). New approaches to improving thermal regulating property of cellulosic fabric. Carbohydrate Polymers, 101, 912-919. doi:10.1016/j.carbpol.2013.10.006 es_ES
dc.description.references Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042 es_ES
dc.description.references Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-Based Ultracapacitors. Nano Letters, 8(10), 3498-3502. doi:10.1021/nl802558y es_ES
dc.description.references Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental Science, 4(4), 1113. doi:10.1039/c0ee00683a es_ES
dc.description.references Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., … Ruoff, R. S. (2011). Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 332(6037), 1537-1541. doi:10.1126/science.1200770 es_ES
dc.description.references Mao, S., & Chen, J. (2017). Graphene-based electronic biosensors. Journal of Materials Research, 32(15), 2954-2965. doi:10.1557/jmr.2017.129 es_ES
dc.description.references Moldovan, O., Iñiguez, B., Deen, M. J., & Marsal, L. F. (2015). Graphene electronic sensors – review of recent developments and future challenges. IET Circuits, Devices & Systems, 9(6), 446-453. doi:10.1049/iet-cds.2015.0259 es_ES
dc.description.references Sun, Z. K. (2020). The Potential of Graphene in Electronic Applications. Materials Science Forum, 976, 121-130. doi:10.4028/www.scientific.net/msf.976.121 es_ES
dc.description.references Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/revmodphys.81.109 es_ES
dc.description.references Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2014). Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose, 21(5), 3813-3827. doi:10.1007/s10570-014-0385-1 es_ES
dc.description.references Zhang, Z., Xiao, F., Xiao, J., & Wang, S. (2015). Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 3(22), 11817-11823. doi:10.1039/c5ta01990g es_ES
dc.description.references Shateri-Khalilabad, M., & Yazdanshenas, M. E. (2013). Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 20(2), 963-972. doi:10.1007/s10570-013-9873-y es_ES
dc.description.references Molina, J. (2016). Graphene-based fabrics and their applications: a review. RSC Advances, 6(72), 68261-68291. doi:10.1039/c6ra12365a es_ES
dc.description.references Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10(8), 569-581. doi:10.1038/nmat3064 es_ES
dc.description.references Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872 es_ES
dc.description.references Li, Z., Xu, Z., Liu, Y., Wang, R., & Gao, C. (2016). Multifunctional non-woven fabrics of interfused graphene fibres. Nature Communications, 7(1). doi:10.1038/ncomms13684 es_ES
dc.description.references Liu, Z., Li, Z., Xu, Z., Xia, Z., Hu, X., Kou, L., … Gao, C. (2014). Wet-Spun Continuous Graphene Films. Chemistry of Materials, 26(23), 6786-6795. doi:10.1021/cm5033089 es_ES
dc.description.references Ji, H., Sellan, D. P., Pettes, M. T., Kong, X., Ji, J., Shi, L., & Ruoff, R. S. (2014). Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci., 7(3), 1185-1192. doi:10.1039/c3ee42573h es_ES
dc.description.references Wang, C., Feng, L., Yang, H., Xin, G., Li, W., Zheng, J., … Li, X. (2012). Graphene oxide stabilized polyethylene glycol for heat storage. Physical Chemistry Chemical Physics, 14(38), 13233. doi:10.1039/c2cp41988b es_ES
dc.description.references Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., & Wang, G. (2019). Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal, 356, 641-661. doi:10.1016/j.cej.2018.09.013 es_ES
dc.description.references Zou, D., Ma, X., Liu, X., Zheng, P., & Hu, Y. (2018). Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. International Journal of Heat and Mass Transfer, 120, 33-41. doi:10.1016/j.ijheatmasstransfer.2017.12.024 es_ES
dc.description.references Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2014). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Journal of Power Sources, 248, 37-43. doi:10.1016/j.jpowsour.2013.08.135 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem