Mostrar el registro sencillo del ítem
dc.contributor.author | Ruiz-Calleja, Tamara Rocío | es_ES |
dc.contributor.author | BONET-ARACIL, MARILÉS | es_ES |
dc.contributor.author | Gisbert Paya, Jaime | es_ES |
dc.contributor.author | Bou-Belda, Eva | es_ES |
dc.date.accessioned | 2021-06-23T03:30:41Z | |
dc.date.available | 2021-06-23T03:30:41Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168337 | |
dc.description.abstract | [EN] Thermal management is a critical factor in several areas, such as architecture, computing, and transportation. Improving thermal regulation effectiveness is a challenging materials engineers. New materials can be used as thermoregulators sucha as graphene or Phase Change Materials (PCM). Textile engineering is also concerned and researchers are developing numerous advances for effective thermal control. In this investigation, we focus on finding new approaches for thermal regulation of cellulosic fabrics combining both technologies, phase change materials and graphene. For this purpose, we compare the thermal behavior of a cellulosic fabric when applying a coating paste containing graphene or phase change materials individually, finding that their performances are similar during heating. Likewise, the synergy produced by using both materials in the same coating paste is studied, proving that the action of graphene and PCM simultaneously allows the dissipation of more heat energy than when acting individually. These results open new paths of research on thermoregulation that may be useful in numerous applications beyond textiles. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Materials Today Communications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Thermoregulation | es_ES |
dc.subject | Grapheme | es_ES |
dc.subject | Phase change materials | es_ES |
dc.subject | Coating | es_ES |
dc.subject | Textile | es_ES |
dc.subject.classification | INGENIERIA TEXTIL Y PAPELERA | es_ES |
dc.title | Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.mtcomm.2020.101557 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Ruiz-Calleja, TR.; Bonet-Aracil, M.; Gisbert Paya, J.; Bou-Belda, E. (2020). Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics. Materials Today Communications. 25:1-7. https://doi.org/10.1016/j.mtcomm.2020.101557 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.mtcomm.2020.101557 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.identifier.eissn | 2352-4928 | es_ES |
dc.relation.pasarela | S\417114 | es_ES |
dc.description.references | Havenith, G. (2002). Interaction of Clothing and Thermoregulation. Exogenous Dermatology, 1(5), 221-230. doi:10.1159/000068802 | es_ES |
dc.description.references | Flouris, A. D., & Cheung, S. S. (2006). Design and Control Optimization of Microclimate Liquid Cooling Systems Underneath Protective Clothing. Annals of Biomedical Engineering, 34(3), 359-372. doi:10.1007/s10439-005-9061-9 | es_ES |
dc.description.references | Shaid, A., Wang, L., Islam, S., Cai, J. Y., & Padhye, R. (2016). Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile. Applied Thermal Engineering, 107, 602-611. doi:10.1016/j.applthermaleng.2016.06.187 | es_ES |
dc.description.references | Tyurin, I. N., Getmantseva, V. V., & Andreeva, E. G. (2018). Analysis of Innovative Technologies of Thermoregulating Textile Materials. Fibre Chemistry, 50(1), 1-9. doi:10.1007/s10692-018-9918-y | es_ES |
dc.description.references | Nejman, A., & Goetzendorf-Grabowska, B. (2013). Heat balance of textile materials modified with the mixtures of PCM microcapsules. Thermochimica Acta, 569, 144-150. doi:10.1016/j.tca.2013.07.023 | es_ES |
dc.description.references | Mondal, S. (2008). Phase change materials for smart textiles – An overview. Applied Thermal Engineering, 28(11-12), 1536-1550. doi:10.1016/j.applthermaleng.2007.08.009 | es_ES |
dc.description.references | Lu, Y., Xiao, X., Fu, J., Huan, C., Qi, S., Zhan, Y., … Xu, G. (2019). Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chemical Engineering Journal, 355, 532-539. doi:10.1016/j.cej.2018.08.189 | es_ES |
dc.description.references | Ye, D. M. (2014). Research on PCM Textiles with Material Properties in Sports Wear Application. Advanced Materials Research, 910, 450-454. doi:10.4028/www.scientific.net/amr.910.450 | es_ES |
dc.description.references | Doba Kadem, F., & Saraç, E. G. (2016). An experimental application on denim garment to give thermal regulation property. The Journal of The Textile Institute, 108(3), 353-360. doi:10.1080/00405000.2016.1166822 | es_ES |
dc.description.references | Lin, S.-H. (2012). Phase Change Materials’ Application in Clothing Design. Transactions of the Materials Research Society of Japan, 37(2), 103-106. doi:10.14723/tmrsj.37.103 | es_ES |
dc.description.references | Zalba, B., Marı́n, J. M., Cabeza, L. F., & Mehling, H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3), 251-283. doi:10.1016/s1359-4311(02)00192-8 | es_ES |
dc.description.references | Hassabo, A. G. (2014). New approaches to improving thermal regulating property of cellulosic fabric. Carbohydrate Polymers, 101, 912-919. doi:10.1016/j.carbpol.2013.10.006 | es_ES |
dc.description.references | Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042 | es_ES |
dc.description.references | Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-Based Ultracapacitors. Nano Letters, 8(10), 3498-3502. doi:10.1021/nl802558y | es_ES |
dc.description.references | Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental Science, 4(4), 1113. doi:10.1039/c0ee00683a | es_ES |
dc.description.references | Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., … Ruoff, R. S. (2011). Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 332(6037), 1537-1541. doi:10.1126/science.1200770 | es_ES |
dc.description.references | Mao, S., & Chen, J. (2017). Graphene-based electronic biosensors. Journal of Materials Research, 32(15), 2954-2965. doi:10.1557/jmr.2017.129 | es_ES |
dc.description.references | Moldovan, O., Iñiguez, B., Deen, M. J., & Marsal, L. F. (2015). Graphene electronic sensors – review of recent developments and future challenges. IET Circuits, Devices & Systems, 9(6), 446-453. doi:10.1049/iet-cds.2015.0259 | es_ES |
dc.description.references | Sun, Z. K. (2020). The Potential of Graphene in Electronic Applications. Materials Science Forum, 976, 121-130. doi:10.4028/www.scientific.net/msf.976.121 | es_ES |
dc.description.references | Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/revmodphys.81.109 | es_ES |
dc.description.references | Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2014). Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose, 21(5), 3813-3827. doi:10.1007/s10570-014-0385-1 | es_ES |
dc.description.references | Zhang, Z., Xiao, F., Xiao, J., & Wang, S. (2015). Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 3(22), 11817-11823. doi:10.1039/c5ta01990g | es_ES |
dc.description.references | Shateri-Khalilabad, M., & Yazdanshenas, M. E. (2013). Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 20(2), 963-972. doi:10.1007/s10570-013-9873-y | es_ES |
dc.description.references | Molina, J. (2016). Graphene-based fabrics and their applications: a review. RSC Advances, 6(72), 68261-68291. doi:10.1039/c6ra12365a | es_ES |
dc.description.references | Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10(8), 569-581. doi:10.1038/nmat3064 | es_ES |
dc.description.references | Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872 | es_ES |
dc.description.references | Li, Z., Xu, Z., Liu, Y., Wang, R., & Gao, C. (2016). Multifunctional non-woven fabrics of interfused graphene fibres. Nature Communications, 7(1). doi:10.1038/ncomms13684 | es_ES |
dc.description.references | Liu, Z., Li, Z., Xu, Z., Xia, Z., Hu, X., Kou, L., … Gao, C. (2014). Wet-Spun Continuous Graphene Films. Chemistry of Materials, 26(23), 6786-6795. doi:10.1021/cm5033089 | es_ES |
dc.description.references | Ji, H., Sellan, D. P., Pettes, M. T., Kong, X., Ji, J., Shi, L., & Ruoff, R. S. (2014). Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci., 7(3), 1185-1192. doi:10.1039/c3ee42573h | es_ES |
dc.description.references | Wang, C., Feng, L., Yang, H., Xin, G., Li, W., Zheng, J., … Li, X. (2012). Graphene oxide stabilized polyethylene glycol for heat storage. Physical Chemistry Chemical Physics, 14(38), 13233. doi:10.1039/c2cp41988b | es_ES |
dc.description.references | Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., & Wang, G. (2019). Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal, 356, 641-661. doi:10.1016/j.cej.2018.09.013 | es_ES |
dc.description.references | Zou, D., Ma, X., Liu, X., Zheng, P., & Hu, Y. (2018). Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. International Journal of Heat and Mass Transfer, 120, 33-41. doi:10.1016/j.ijheatmasstransfer.2017.12.024 | es_ES |
dc.description.references | Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2014). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Journal of Power Sources, 248, 37-43. doi:10.1016/j.jpowsour.2013.08.135 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |