- -

Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics

Mostrar el registro completo del ítem

Ruiz-Calleja, TR.; Bonet-Aracil, M.; Gisbert Paya, J.; Bou-Belda, E. (2020). Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics. Materials Today Communications. 25:1-7. https://doi.org/10.1016/j.mtcomm.2020.101557

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168337

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of the influence of graphene and phase change microcapsules on thermal behavior of cellulosic fabrics
Autor: Ruiz-Calleja, Tamara Rocío BONET-ARACIL, MARILÉS Gisbert Paya, Jaime Bou-Belda, Eva
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] Thermal management is a critical factor in several areas, such as architecture, computing, and transportation. Improving thermal regulation effectiveness is a challenging materials engineers. New materials can be used ...[+]
Palabras clave: Thermoregulation , Grapheme , Phase change materials , Coating , Textile
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Materials Today Communications. (eissn: 2352-4928 )
DOI: 10.1016/j.mtcomm.2020.101557
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.mtcomm.2020.101557
Tipo: Artículo

References

Havenith, G. (2002). Interaction of Clothing and Thermoregulation. Exogenous Dermatology, 1(5), 221-230. doi:10.1159/000068802

Flouris, A. D., & Cheung, S. S. (2006). Design and Control Optimization of Microclimate Liquid Cooling Systems Underneath Protective Clothing. Annals of Biomedical Engineering, 34(3), 359-372. doi:10.1007/s10439-005-9061-9

Shaid, A., Wang, L., Islam, S., Cai, J. Y., & Padhye, R. (2016). Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile. Applied Thermal Engineering, 107, 602-611. doi:10.1016/j.applthermaleng.2016.06.187 [+]
Havenith, G. (2002). Interaction of Clothing and Thermoregulation. Exogenous Dermatology, 1(5), 221-230. doi:10.1159/000068802

Flouris, A. D., & Cheung, S. S. (2006). Design and Control Optimization of Microclimate Liquid Cooling Systems Underneath Protective Clothing. Annals of Biomedical Engineering, 34(3), 359-372. doi:10.1007/s10439-005-9061-9

Shaid, A., Wang, L., Islam, S., Cai, J. Y., & Padhye, R. (2016). Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile. Applied Thermal Engineering, 107, 602-611. doi:10.1016/j.applthermaleng.2016.06.187

Tyurin, I. N., Getmantseva, V. V., & Andreeva, E. G. (2018). Analysis of Innovative Technologies of Thermoregulating Textile Materials. Fibre Chemistry, 50(1), 1-9. doi:10.1007/s10692-018-9918-y

Nejman, A., & Goetzendorf-Grabowska, B. (2013). Heat balance of textile materials modified with the mixtures of PCM microcapsules. Thermochimica Acta, 569, 144-150. doi:10.1016/j.tca.2013.07.023

Mondal, S. (2008). Phase change materials for smart textiles – An overview. Applied Thermal Engineering, 28(11-12), 1536-1550. doi:10.1016/j.applthermaleng.2007.08.009

Lu, Y., Xiao, X., Fu, J., Huan, C., Qi, S., Zhan, Y., … Xu, G. (2019). Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chemical Engineering Journal, 355, 532-539. doi:10.1016/j.cej.2018.08.189

Ye, D. M. (2014). Research on PCM Textiles with Material Properties in Sports Wear Application. Advanced Materials Research, 910, 450-454. doi:10.4028/www.scientific.net/amr.910.450

Doba Kadem, F., & Saraç, E. G. (2016). An experimental application on denim garment to give thermal regulation property. The Journal of The Textile Institute, 108(3), 353-360. doi:10.1080/00405000.2016.1166822

Lin, S.-H. (2012). Phase Change Materials’ Application in Clothing Design. Transactions of the Materials Research Society of Japan, 37(2), 103-106. doi:10.14723/tmrsj.37.103

Zalba, B., Marı́n, J. M., Cabeza, L. F., & Mehling, H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3), 251-283. doi:10.1016/s1359-4311(02)00192-8

Hassabo, A. G. (2014). New approaches to improving thermal regulating property of cellulosic fabric. Carbohydrate Polymers, 101, 912-919. doi:10.1016/j.carbpol.2013.10.006

Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042

Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-Based Ultracapacitors. Nano Letters, 8(10), 3498-3502. doi:10.1021/nl802558y

Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental Science, 4(4), 1113. doi:10.1039/c0ee00683a

Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., … Ruoff, R. S. (2011). Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 332(6037), 1537-1541. doi:10.1126/science.1200770

Mao, S., & Chen, J. (2017). Graphene-based electronic biosensors. Journal of Materials Research, 32(15), 2954-2965. doi:10.1557/jmr.2017.129

Moldovan, O., Iñiguez, B., Deen, M. J., & Marsal, L. F. (2015). Graphene electronic sensors – review of recent developments and future challenges. IET Circuits, Devices & Systems, 9(6), 446-453. doi:10.1049/iet-cds.2015.0259

Sun, Z. K. (2020). The Potential of Graphene in Electronic Applications. Materials Science Forum, 976, 121-130. doi:10.4028/www.scientific.net/msf.976.121

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/revmodphys.81.109

Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2014). Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose, 21(5), 3813-3827. doi:10.1007/s10570-014-0385-1

Zhang, Z., Xiao, F., Xiao, J., & Wang, S. (2015). Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 3(22), 11817-11823. doi:10.1039/c5ta01990g

Shateri-Khalilabad, M., & Yazdanshenas, M. E. (2013). Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 20(2), 963-972. doi:10.1007/s10570-013-9873-y

Molina, J. (2016). Graphene-based fabrics and their applications: a review. RSC Advances, 6(72), 68261-68291. doi:10.1039/c6ra12365a

Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10(8), 569-581. doi:10.1038/nmat3064

Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872

Li, Z., Xu, Z., Liu, Y., Wang, R., & Gao, C. (2016). Multifunctional non-woven fabrics of interfused graphene fibres. Nature Communications, 7(1). doi:10.1038/ncomms13684

Liu, Z., Li, Z., Xu, Z., Xia, Z., Hu, X., Kou, L., … Gao, C. (2014). Wet-Spun Continuous Graphene Films. Chemistry of Materials, 26(23), 6786-6795. doi:10.1021/cm5033089

Ji, H., Sellan, D. P., Pettes, M. T., Kong, X., Ji, J., Shi, L., & Ruoff, R. S. (2014). Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci., 7(3), 1185-1192. doi:10.1039/c3ee42573h

Wang, C., Feng, L., Yang, H., Xin, G., Li, W., Zheng, J., … Li, X. (2012). Graphene oxide stabilized polyethylene glycol for heat storage. Physical Chemistry Chemical Physics, 14(38), 13233. doi:10.1039/c2cp41988b

Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., & Wang, G. (2019). Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal, 356, 641-661. doi:10.1016/j.cej.2018.09.013

Zou, D., Ma, X., Liu, X., Zheng, P., & Hu, Y. (2018). Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. International Journal of Heat and Mass Transfer, 120, 33-41. doi:10.1016/j.ijheatmasstransfer.2017.12.024

Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2014). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Journal of Power Sources, 248, 37-43. doi:10.1016/j.jpowsour.2013.08.135

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem